• Title/Summary/Keyword: Rotating classifier

Search Result 21, Processing Time 0.032 seconds

Fault Diagnosis of Rotating Machinery Using Multi-class Support Vector Machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • Hwang, Won-Woo;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the nitration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

Numerical Study on Flow Characteristics and Classification Performance of Circulating Air Classifier (수치해석을 이용한 순환형공기분급기 유동특성 및 분급성능 연구)

  • Yoon, Jong-Hwan;Cheong, Jun-Gyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.211-219
    • /
    • 2017
  • In this study, we performed numerical simulations on a circulating air classifier using a commercial computational fluid dynamics program. The variations in the grade efficiency, the cut-size and the cut-sharpness were calculated and discussed. By controlling the rotating speed of the main fan, the cut-size could be rapidly increased. However the linearity of the cut-size variation with respect to the main fan speed was not sufficient for application to contaminated soil classification processes. On the other hand, by varying the rotating speed of the classifying fan, the cut-size gradually decreased and could be precisely adjusted. Using both the main fan and the classifying fan, we could achieve larger cut-sharpness values and better classifying performances.

A Comparison of Artificial Neural Networks and Statistical Pattern Recognition Methods for Rotation Machine Condition Classification (회전기계 고장 진단에 적용한 인공 신경회로망과 통계적 패턴 인식 기법의 비교 연구)

  • Kim, Chang-Gu;Park, Kwang-Ho;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.119-125
    • /
    • 1999
  • This paper gives an overview of the various approaches to designing statistical pattern recognition scheme based on Bayes discrimination rule and the artificial neural networks for rotating machine condition classification. Concerning to Bayes discrimination rule, this paper contains the linear discrimination rule applied to classification into several multivariate normal distributions with common covariance matrices, the quadratic discrimination rule under different covariance matrices. Also we discribes k-nearest neighbor method to directly estimate a posterior probability of each class. Five features are extracted in time domain vibration signals. Employing these five features, statistical pattern classifier and neural networks have been established to detect defects on rotating machine. Four different cases of rotation machine were observed. The effects of k number and neural networks structures on monitoring performance have also been investigated. For the comparison of diagnosis performance of these two method, their recognition success rates are calculated form the test data. The result of experiment which classifies the rotating machine conditions using each method presents that the neural networks shows the highest recognition rate.

  • PDF

Classification System using Vibration Signal for Diagnosing Rotating Machinery (회전기계의 이상진단을 위한 진동신호 분류시스템에 관한 연구)

  • Lim, Dong-Soo;An, Jin-Long;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1133-1138
    • /
    • 2000
  • This paper describes a signal recognition method for diagnosing the rotating machinery using wavelet-aided Self-Organizing Feature Map(SOFM). The SOFM specialized from neural network is a new and effective algorithm for interpreting large and complex data sets. It converts high-dimensional data items into simple order relationships with low dimension. Additionally the Learning Vector Quantization(LVQ) is used for reducing the error from SOFM. Multi-resolution and wavelet transform are used to extract salient features from the primary vibration signals. Since it decomposes the raw timebase signal into two respective parts in the time space and frequency domain, it does not lose either information unlike Fourier transform. This paper is focused on the development of advanced signal classifier in order to automatize vibration signal pattern recognition. This method is verified by the experiment and several abnormal vibrations such as unbalance and rubbing are classified with high flexibility and reliability by the proposed methods.

  • PDF

Classification of Normal/Abnormal Conditions for Small Reciprocating Compressors using Wavelet Transform and Artificial Neural Network (웨이브렛변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, Dong-Soo;An, Jin-Long;Yang, Bo-Suk;An, Byung-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.796-801
    • /
    • 2000
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a signal classification method for diagnosing the rotating machinery using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them are compared with each other. This paper is focused on the development of an advanced signal classifier to automatise the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

Motion Estimation and Machine Learning-based Wind Turbine Monitoring System (움직임 추정 및 머신 러닝 기반 풍력 발전기 모니터링 시스템)

  • Kim, Byoung-Jin;Cheon, Seong-Pil;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1516-1522
    • /
    • 2017
  • We propose a novel monitoring system for diagnosing crack faults of the wind turbine using image information. The proposed method classifies a normal state and a abnormal state for the blade parts of the wind turbine. Specifically, the images are input to the proposed system in various states of wind turbine rotation. according to the blade condition. Then, the video of rotating blades on the wind turbine is divided into several image frames. Motion vectors are estimated using the previous and current images using the motion estimation, and the change of the motion vectors is analyzed according to the blade state. Finally, we determine the final blade state using the Support Vector Machine (SVM) classifier. In SVM, features are constructed using the area information of the blades and the motion vector values. The experimental results showed that the proposed method had high classification performance and its $F_1$ score was 0.9790.

Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network (웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, D.S.;Yang, B.S.;An, B.H.;Tan, A.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

Performance Improvement of Bearing Fault Diagnosis Using a Real-Time Training Method (실시간 학습 방법을 이용한 베어링 고장진단 성능 개선)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.551-559
    • /
    • 2017
  • In this paper, a real-time training method to improve the performance of bearing fault diagnosis. The traditional bearing fault diagnosis cannot classify a condition which is not trained by the classifier. The proposed 4-step method trains and recognizes new condition in real-time, thereby it can classify the condition accurately. In the first step, we calculate the maximum distance value for each class by calculating a Euclidean distance between a feature vector of each class and a centroid of the corresponding class in the training information. In the second step, we calculate a Euclidean distance between a feature vector of new acquired data and a centroid of each class, and then compare with the allowed maximum distance of each class. In the third step, if the distance between a feature vector of new acquired data and a centroid of each class is larger than the allowed maximum distance of each class, we define that it is data of new condition and increase count of new condition. In the last step, if the count of new condition is over 10, newly acquired 10 data are assigned as a new class and then conduct re-training the classifier. To verify the performance of the proposed method, bearing fault data from a rotating machine was utilized.

A Signal Processing Technique for Predictive Fault Detection based on Vibration Data (진동 데이터 기반 설비고장예지를 위한 신호처리기법)

  • Song, Ye Won;Lee, Hong Seong;Park, Hoonseok;Kim, Young Jin;Jung, Jae-Yoon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.111-121
    • /
    • 2018
  • Many problems in rotating machinery such as aircraft engines, wind turbines and motors are caused by bearing defects. The abnormalities of the bearing can be detected by analyzing signal data such as vibration or noise, proper pre-processing through a few signal processing techniques is required to analyze their frequencies. In this paper, we introduce the condition monitoring method for diagnosing the failure of the rotating machines by analyzing the vibration signal of the bearing. From the collected signal data, the normal states are trained, and then normal or abnormal state data are classified based on the trained normal state. For preprocessing, a Hamming window is applied to eliminate leakage generated in this process, and the cepstrum analysis is performed to obtain the original signal of the signal data, called the formant. From the vibration data of the IMS bearing dataset, we have extracted 6 statistic indicators using the cepstral coefficients and showed that the application of the Mahalanobis distance classifier can monitor the bearing status and detect the failure in advance.

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF