• Title/Summary/Keyword: Rotating Turbulent Flow

Search Result 146, Processing Time 0.025 seconds

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel (고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의)

  • Lee, Seungkyu;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.89-97
    • /
    • 2017
  • Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.

PIV measurement of roof corner vortices

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.441-454
    • /
    • 2001
  • Conical vortices on roof corners of a prismatic low-rise building have been investigated by using the PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and model height was $5.3{\times}10^3$. Mean and instantaneous vector fields for velocity, vorticity, and turbulent kinetic energy were measured at two vertical planes and for two different flow angles of $30^{\circ}$ and $45^{\circ}$. The measurements provided a clear view of the complex flow structures on roof corners such as a pair of counter rotating conical vortices, secondary vortices, and tertiary vortices. They also enabled accurate and easy measurement of the size of vortices. Additionally, we could easily locate the centers of the vortices from the ensemble averaged velocity fields. It was observed that the flow angle of a $30^{\circ}$ produces a higher level of vorticity and turbulent kinetic energy in one of the pair of vortices than does the $45^{\circ}$ flow angle.

Spatial Analysis of Turbulent Flow in Combustion Chamber using High Resolution Dual Color PIV (고분해능 이색 PIV를 이용한 가솔린 엔진 연소실내 난류의 공간적 해석)

  • Lee, K.H.;Lee, C.S.;Lee, H.G.;Chon, M.S.;Joo, Y.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.132-141
    • /
    • 1998
  • Particle image velocimetry(PIV), a planar measuring technique, is an efficient tool for studying the complicated flow field such as in-cylinder flow, and intake port flow. PIV can be also used for analyzing the integral length scale of turbulence, which is a measure of the size of the large eddies that contain most of the turbulence kinetic energy. In this study, dual color scanning PIV was designed and demonstrated by using a rotating mirror and a beam splitter. This PIV system allowed enlargement of flexibility in the intensity of vectors to be calculated by spatial filtering technique, even in combustion chamber with high velocity gradient and high vorticity$({\sim}1000s^{-1})$. A new color image processing algorithm was developed, which was used to find the direction of particle movement directly from the digital image. These measuring techniques were successfully applied to obtaining the turbulence intensity (~0.1m/s) and the turbulent integral length scale of vorticity(~1mm).

  • PDF

A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross air-flow

  • Lee, Kee-Man;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.163-173
    • /
    • 1997
  • This article presents an application of a large-scale structural mixing model (Broadwell et al. 1984) to the blowout of turbulent reacting jets discharging perpendicularly into an unconfined cross air-flow. In an analysis of a common stability curve, a plausible explanation can be made that the phenomenon of blowout is related only to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at fixed positions at all times according to the velocity ratio R. Measurements of the lower blowout limits in the liftable flame agree qualitatively with the blowout parameter ${\varepsilon}$, proposed by Broadwell et al. Good agreement between the results calculated by a modified blowout parameter ${\varepsilon}^'$ and experimental results confirms the important effect of a large-scale structure in specifying the stabilization feature of blowouts.

  • PDF

On Validation to the Three-Dimensional Multigrid Calculations of Rotating Impeller Flows in Centrifugal Compressors (멀티그리드 기법을 이용한 원심압축기 임펠러의 3차원 회전유동 전산해석에 대한 검증)

  • Chang K. H.;Moon Y. J.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.30-36
    • /
    • 1998
  • The three dimensional Navier-Stokes equations in rotational coordinate are solved using a multigrid algorithm for the calculations of turbulent flows in centrifugal compressor impellers. Some numerical studies are made in applying the multigrid algorithm for the turbulent flow calculations with the standard κ-ε equations. The present method is used to calculate the flow fields of Mizuki's B-type and Niigata Ms. 350 centrifugal compressor impellers. Fast convergent steady-state solutions are carefully examined, comparing the static pressure distributions along the impeller flow passage and also in the diffuser with experimental data. Performance of a centrifugal compressor system is also numerically validated by comparing the performances of the impeller and the diffuser individually.

  • PDF

A Study on Vortex Pair Interaction with Fluid Free Surface

  • Kim, K.H.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.26-31
    • /
    • 2005
  • Today, the research to examine a fact that interaction between the air and the fluid free surface affects the steady state flow and air. We proved the interaction between vortex pairs and free surface on each condition that is created by the end of delta wings. Another purpose of this study is to investigate the effect of surface active material which call change the surface tension and we must consider when we refer to turbulent flow on surface tension. Therefore, this research examined the growth process of vortex pairs on condition of clean, contaminated free surface and wall after we made vortex pairs through counter rotating flaps. The results of this study suggest that vortex pairs in clean free surface rise safely but the vortex pairs in contaminated free surface and rigid, no slip is made secondary vortex or rebounding. However the secondary vortex in rigid, no slip is stronger than before. and we can find the vortex shape which roll up more completely. However, these will disappear by the effect of wall.

  • PDF

Influence of the Unsteady Wake on the Flow and Heat Transfer in a Linear Turbine Cascade (비정상 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구)

  • Yun, Sun-Hyeon;Sim, Jae-Gyeong;Kim, Dong-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • The influence of unsteady wake on the flow and heat transfer characteristics in a four-vane linear cascade was experimentally investigated. The unsteady wake was generated with four rotating rectangular plates located upstream of the cascade. Tested inlet Reynolds number based on chord length was set to 66,000 by controlling free-stream velocity. A hot-wire anemometer system was employed to measure turbulent velocity components. For the convective heat transfer coefficients measurement on turbine blade surface, thermochromic liquid crystal and gold film Intrex were used. It was found that the unsteady wake enhances the turbulent motion in the cascade passage and accordingly promotes the development and transition of boundary layer. It was found that the heat transfer coefficients on the blade surface increase as the plate rotating speed increases. However, the increasing of heat transfer coefficients is not significant in the case that Strouhal number is higher than 0.503.

DNS of Interaction Phenomena in Particle-Laden Turbulence

  • Kajishima T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.9-11
    • /
    • 2003
  • A homogeneous flow field including more than 2000 spherical particles was directly simulated. Particles are settling by gravity with the Reynolds number ranging from 50 to 300, based on diameter and slip velocity. Particular attention was focused on the distribution of particles. The Reynolds-number dependence, influences of particle rotation and loading ratio, and the dynamics of particle clusters are discussed. In the higher Reynolds number case, the wake attraction causes particle clusters and the average drag coefficient decreases significantly. Non-rotating particles maintain cluster structure and rotating ones moves randomly in the horizontal direction. It is because of the difference in the direction of the lift force.

  • PDF

Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins (곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.

Experimental Study on the Helical Flow Field in a Concentric Annulus with Rotating Inner Cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적 연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.822-833
    • /
    • 2000
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow has been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.