• Title/Summary/Keyword: Rotating Torque

Search Result 307, Processing Time 0.024 seconds

Aerodynamic Shape Optimization of Helicopter Rotor Blades in Hover Using a Continuous Adjoint Method on Unstructured Meshes (비정렬 격자계에서 연속 Adjoint 방법을 이용한 헬리콥터 로터 블레이드의 제자리 비행 공력 형상 최적설계)

  • Lee, S.-W.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • An aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference for hovering rotor blades. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized using a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the tip vortex. Applications were made for the aerodynamic shape optimization of Caradonna-Tung rotor blades and UH60 rotor blades in hover. The results showed that the present method is an effective tool to determine optimum aerodynamic shapes of rotor blades requiring less torque while maintaining the desired thrust level.

A Numerical Study on the Effect of Mountainous Terrain and Turbine Arrangement on the Performance of Wind Power Generation (지형에 따른 발전기 배치가 풍력 발전 성능에 미치는 영향에 관한 수치해석 연구)

  • Lee, Myung-Sung;Lee, Seung-Ho;Hur, Nahm-Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.901-906
    • /
    • 2010
  • A three-dimensional flow simulation was performed to investigate the flow field in a wind farm on a complex terrain. The present study aims to examine the effects of mountainous terrain and turbine arrangement on the performance of wind power generation. A total of 49 wind turbines was modeled in the computational domain; detailed blade shape of the turbines was considered. Frozen rotor method was used to simulate the rotating operation. The torque acting on the turbine blades was calculated to evaluate the performance of the wind turbines. The numerical results showed details of the flow structure in the wind farm including the velocity deficit in the separated flow regions; this velocity deficit was due to the topographical effect. The effect of the wake induced by the upstream turbine on the performance of the downstream wind turbine could also be observed from the results. The methodology of the present study can be used for selecting future wind-farm sites and wind-turbine locations in a selected site to ensure maximum power generation.

Discovery of a New Mechanism to Release Complex Molecules from Icy Grain Mantles around Young Stellar Objects

  • Hoang, Thiem;Tram, Le Ngoc
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.70.4-70.4
    • /
    • 2019
  • Complex organic molecules (COMs) are increasingly observed in the environs of young stellar objects (YSOs), including hot cores/corinos around high-mass/low-mass protostars and protoplanetary disks. It is widely believed that COMs are first formed in the ice mantle of dust grains and subsequently released to the gas by thermal sublimation at high temperatures (T>100 K) in strong stellar radiation fields. In this paper, we report a new mechanism that can desorb COMs from icy grain mantles at low temperatures (T<100K), which is termed rotational desorption. The rotational desorption process of COMs comprises two stages: (1) ice mantles on suprathermally rotating grains spun-up by radiative torques (RATs) are first disrupted into small fragments by centrifugal stress, and (2) COMs and water ice then evaporate rapidly from the tiny fragments (i.e., radius a <1nm) due to thermal spikes or enhanced thermal sublimation due to increased grain temperature for larger fragments (a>1 nm). We discuss the implications of rotational desorption for releasing COMs and water ice in the inner region of protostellar envelopes (hot cores and corinos), photodissociation regions, and protoplanetary disks (PPDs). In shocked regions of stellar outflows, we find that nanoparticles can be spun-up to suprathermal rotation due to supersonic drift of neutral gas, such that centrifugal force can be sufficient to directly eject some molecules from the grain surface, provided that nanoparticles are made of strong material. Finally, we find that large aggregates (a~ 1-100 micron) exposed to strong stellar radiations can be disrupted into individual icy grains via RAdiative Torque Disruption (RATD) mechanism, which is followed by rotational desorption of ice mantles and evaporation of COMs. In the RATD picture, we expect some correlation between the enhancement of COMs and the depletion of large dust grains in not very dense regions of YSOs.

  • PDF

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors (고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정)

  • Jeong, Kwon Jong;Hwang, Sung Ho;Baek, Doo San;Kim, Tae Young;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

A Study on Stabilization of Underwater TAS Winch System Deploy/Recover Operation Performance (수중용 TAS윈치 전개/회수 성능 안정화 방안에 관한 연구)

  • Chang, Ho-Seong;Cho, Kyu-Lyong;Hwang, Jae-Gyo;Lee, Sang-Yong;Kim, Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.472-482
    • /
    • 2019
  • This paper describes the stabilization of underwater TAS winch system Deploy/Recover operation performance. TAS winch installed on the stern of submarine performs to deploy/recover sensor, towing cable and rope tail which is deployed from the stern and separated from submarine itself. Also TAS winch provides transmission path of power to the sensor and data transmitting/receiving path which data are acquired from underwater environment like sound, depth and temperature. At the step of TAS winch evaluation test, sporadic standstill and rotating speed oscillation phenomenon were occurred. Winch motor provides the available torque to deploy/recover TAS and root cause analysis to the winch motor was done to find exact reason to sporadic malfunction. When winch motor was disassembled, eccentricity of rotor, slip-ring and the other composition part for winch motor were found. These might cause magnetic field distortion. To make TAS winch system more stable and block magnetic field distortion, this paper suggests methods to enhance fixing status installed in winch motor. For reliable data acquisition for TAS winch operation, the deploy/recover function of the improved type of TAS winch was verified in LBTS making similar condition with sea status. At the end of stage, improved type of TAS winch was tested on some functions not only deploy/recover function, but sustainability of TAS operation on specific velocity, steering angle of submarine in the sea trial. Improved type of TAS winch was verified in accordance with design requirement. Also, validity of suggested methods were verified by the sea trial.