• Title/Summary/Keyword: Rotating Structure

Search Result 441, Processing Time 0.028 seconds

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Heat Transfer and Flow Characteristics on Co-rotating Disks with a Ventilation Hub in Hard Disk Drive (유츨 허브를 갖는 HDD내 동시회전디스크 표면에서의 열전달 및 유동특성 해석)

  • Cho, Hyung-Hee;Won, Chung-Ho;Goo-Young, Ryu
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.382-389
    • /
    • 2001
  • In the present study, local heat transfer rates for co-rotating disks with two modified hubs having ventilation holes are investigated for Rossby number of 0.04, 0.1 and 0.35 to evaluate the influence of incoming flows through hub holes. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients on the rotating disks using the heat and mass transfer analogy. Flow field measurements are conducted using Laser Doppler Anemometry (LDA) and numerical calculations are performed simultaneously to analyze the flow patterns induced by the disk rotation. The basic flow structure in a cavity between co-rotating disks consists of three regions; the solid-body rotating inner region, the outer region with turbulence vortices and the shroud boundary layer region. The heat/mass transfer. rates on the co-rotating disks are very low near the hub due to the solid-body rotation and those increase rapidly in the outer region due to turbulence mixing. The modified hubs with ventilation holes enhances significantly the heat/mass transfer rates on the region near the hub. The results also show that the heat transfer of Hub-2 is superior to that of Hub-1, but Hub-1 is more profitable for destructing the solid-body rotating inner region.

  • PDF

Finite Element Analysis of Dynamic Characteristics of HDD Spindle System Considering Supporting Structure with Complex Shape (복잡한 지지구조의 유연성을 고려한 HDD 스핀들 시스템의 유한요소 동특성 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.312-318
    • /
    • 2001
  • This paper suggests the finite element method to analyze the dynamic characteristics of a rotating HDD system including the supporting structure with general shape. The flexible supporting structure was modeled by tetrahedra elements to produce a finite element model of disk-spindle-shaft-housing system and the dynamic characteristics of the HDD system was investigated due to the change of rotating speed. The validity of the presented method was verified by the modal testing. The supporting structure has an crucial effect on lower modes for HDD system, so that it is required to consider the supporting structure to accurately analyze the dynamic characteristics of HDD system.

  • PDF

The Vibration Analysis of Composite-VEM Thin-Walled Rotating Beam Using GHM Methodology (회전하는 복합재-VEM 박판보의 GHM 기법을 이용한 진동해석)

  • 박재용;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, warping restraint, anisotropy of constituent materials, and warping and rotary inertias. The VEM layer damping treatment is modeled by using the Golla-Mushes-McTavish(GHM) method, which is employed to account for the frequency-dependent characteristic o the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Inductance Estimation of Permanent Magnet Type Transverse Flux Rotating Motor Using Dynamic-Simulation (Dynamic-Simulation을 통한 영구자석형 횡자속 회전기의 인덕턴스 추정)

  • Kim, Kwang-Woon;Kim, Ji-Won;Jung, Yeon-Ho;Lee, Ji-Young;Kang, Do-Hyun;Chang, Jung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.722-727
    • /
    • 2010
  • This paper presents Dynamic-Simulation to estimate the inductance of a permanent magnet type transverse flux rotating motor by applying the real-time parameter estimation theory. As transverse flux rotating motor has the complex structure, it can be happen to some errors between real value and designed one with respect to the inductance. To reduce this kinds of errors, the real-time parameter estimation theory was applied to dynamic-simulation. And then, By comparing the estimated inductance and designed one, it is realized that the real-time parameter estimation theory can be applied in the permanent magnet type transverse flux rotating motor.

Study on the Stress Distribution of a Rotating Cantilever Beam in Transient Vibration (회전 외팔보의 과도상태 진동시 발생하는 응력분포 연구)

  • 최창민;유홍희;양현익
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.306-311
    • /
    • 2000
  • The stress distribution of a rotating cantilever beam in transient vibration is investigated in this paper. The equations of motion of the rotating bean are derived and numerical results are obtained. The tensile and bending stresses which occur when the beam rotates with the tuned angular speed or passes through the tuned angular speed are obtained. Since those stresses are usually significant during the rotational motion, it is important to estimate them accurately in the design of the rotating structure.

  • PDF

Three Dimensional Flow Structure under Rotating Stall in an Axial Flow Fan (주기적 선회실속이 발성하는 축류홴의 3차원 유동구조)

  • Kang, Chang Sik;Shin, You Hwan;Kim, Kwang Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.105-110
    • /
    • 2002
  • Experimental study was conducted to reveal the instability such as leakage flow and rotating stall in an axial flow fan. For this study, unsteady total pressure probe and multi-hole pressure probe were specially designed for measuring the flow field upstream and downstream of rotor. The measured pressure signal was analyzed by Single and Double Phase Locked Averaging Technique. From the result of total pressure fields at inlet and outlet of the rotor, the useful information on the structure of the stall cell in radial direction was provided. Also, detailed flow measurements were carried out with a specially designed high frequency multi-hole pressure probe, providing some insight to the leakage flow and their interation.

  • PDF

A Study on Reduction of Sound Noise Induced by Disk Rotation in Optical Disk Drives (광 디스크 드라이브의 공력소음 감소에 관한 연구)

  • 송인상;박건순;최학현;김수경;이승엽
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.693-702
    • /
    • 1999
  • We study the characteristics of airflow and sound noise induced by disk rotation in optical disk drives. The characteristics of airflow around a rotating disk surrounded by various tray structures are numerically investigated using a commercial CFD program and then compared with experimental results. Sound pressure and intensity caused by the fluid-structure interactions in the CD/DVD-ROM drive are measured, and the effect of the ariflow on the sound noise and disk vibration is discussed. In order to reduce airflow-induced noise and vibration around the rotating disk, tray geometry is modified. Both numerical and experimental studies implemented with different tray models show that the improved tray model alters the characteristics of the disk-induced airflow, causing the reduction of the airflow-induced sound level.

  • PDF

Numerical investigation of effects of rotating downdraft on tornado-like-vortex characteristics

  • Cao, Shuyang;Wang, Mengen;Zhu, Jinwei;Cao, Jinxin;Tamura, Tetsuro;Yang, Qingshan
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.115-128
    • /
    • 2018
  • Appropriate modeling of a tornado-like vortex is a prerequisite when studying the near-ground wind characteristics of a tornado and tornado-induced wind loads on structures. Both Ward- and ISU-type tornado simulators employ guide vanes to induce angular momentum to converge flow in order to generate tornado-like vortices. But in the Ward-type simulator, the guide vanes are mounted near the ground while in the ISU-type they are located at a high position to allow vertical circulation of flow that creates a rotating downdraft to generate a tornado-like vortex. In this study, numerical simulations were performed to reproduce tornado-like vortices using both Ward-type and ISU-type tornado simulators, from which the effects of rotating downdraft on the vortex characteristics were clarified. Particular attention was devoted to the wander of tornado-like vortices, and their dependences on swirl ratio and fetch length were investigated. The present study showed that the dynamic vortex structure depends significantly on the vortex-generating mechanism, although the time-averaged structure remains similar. This feature should be taken into consideration when tornado-like-vortex simulators are utilized to investigate tornado-induced wind forces on structures.

Design, Development and Analysis of Embedded Systems for Condition Monitoring of Rotating Machines using FFT Algorithm

  • Dessai, Sanket;Naaz, Zakiyaunnissa Alias Naziya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.428-432
    • /
    • 2014
  • Rotating machines are an integral part of large electrical power machinery in most of the industries. Any degradation or outages in the rotating electric machinery can result in significant losses in productivity. It is critical to monitor the equipment for any degradation's so that it can serve as an early warning for adequate maintenance activities and repair. Prior research and field studies have indicated that the rotating machines have a particular type of signal structure during the initial start-up transient. A machine performance can be studied based on the effect of degradation in signal parameters. In this paper a data-acquisition system and the FFT algorithm has been design and model using the MATLAB and Simulink. The implementation had been carried out on the TMS320 DSP Processor and various testing and verification of the machine performance had been carried out. The results show good agreement with expected results for both simulated and real-time data. The real-time data from AC water pumps which have rotating motors built-in were collected and analysed. The FFT algorithm provides frequency response and based on this frequency response performance of the machine had been measured.The FFT algorithm provides only approximation about the machine performances.