• Title/Summary/Keyword: Rotating Channel

Search Result 110, Processing Time 0.024 seconds

Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel (요철이 설치된 회전하는 채널 내부의 유동 및 열전달의 큰에디모사)

  • Ahn, Joon;Choi, Hae-Cheon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.193-198
    • /
    • 2003
  • A gas turbine blade has an internal cooling passage equipped with ribs, which can be modeled as a ribbed channel. We have studied a flow inside a ribbed channel using large eddy simulaton (LES) with a dynamic subgrid-scale model. The simulation results are compared with the experimental ones. The turbulence intensity and local heat transfer near the rib have not been well captured by the conventional Reynolds averaged Navier-Stokes simulation (RANS). However, these variables obtained by the present LES agree well with those from experiments. From the instantaneous velocity and temperature fields, we explain the mechanisms responsible for the local peaks in the heat transfer distribution along the channel wall. We have also investigated the effect of rotation on the flow and heat transfer in the ribbed channel.

  • PDF

Performance Evaluation of Side Channel Type Regenerative Blower (사이드채널형 재생블로워의 성능평가)

  • Lee, Kyoung-Yong;Choi, Young-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.378-383
    • /
    • 2005
  • The performances of side channel type regenerative blowers were evaluated by the blower performance test, 1-D performance prediction and CFD. The performance prediction method was modified using the results of the performance test and CFD and applied to the design of the new regenerative blowers. The major geometric parameters such as channel height, channel area and expansion angle were decided from the performance prediction method for the improved models and the predicted results were compared with CFD and experimental data. Both of the modified models showed improved efficiency at the operating condition. Especially, model3 could be possible to reduce operating rotating speed, that is benefit to noise performance, because of the high head performance at the design point. The CFD results showed that the performance of the regenerative blower was influenced by the secondary circulatory flow in the channel.

  • PDF

Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend (회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel (고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의)

  • Lee, Seungkyu;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.89-97
    • /
    • 2017
  • Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.

NAVIER-STOKES SIMULATION OF A VISCOUS MICRO PUMP WITH A SPIRAL CHANNEL (스파이럴 채널을 가진 초소형 점성 펌프의 Navier-Stokes 해석)

  • Seo, J.H.;Kang, D.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2011
  • The Navier-Stokes equations are solved to study the flow characteristics of a micro viscous pump. The viscous micropump is consisted of a stationary disk with a spiral shaped channel and a rotating disk. A simple geometrical model for the tip clearance is proposed and validated by comparing computed flow rate with corresponding experimental data. Present numerical solutions show satisfactory agreement with the corresponding experimental data. The tip clearance effect is found to become significant as the rotational speed increases. As the pressure load increases, a reversed flow region is seen to form near the stationary disk. The height of the channel is shown to be optimized in terms of the flow rate for a given rotational speed and pressure load. The optimal height of the channel becomes small as the rotational speed decreases or the pressure load increases. The flow rate of the pump is found to be in proportion to the width of channel.

A Study on Screw Design Parameters of Co-Rotating Twin Screw Extruder (동회전 2축 스크류 압출기의 스크류 설계 파라미터에 관한 연구)

  • 최부희;최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.217-226
    • /
    • 2003
  • Twin screw extruders are the heart of the polymer processing industry. They are used at some stage in nearly all polymer processing operations. This paper is concerned with the basic elements of the extruder design. The proper design of the geometry of the extruder screw is of crucial importance to the proper functioning of the extruder. If the material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, a characteristic design on the screw flights shape of the closely intermeshing co-rotating twin screw extruder. This paper presents design parameters of double flighted screw and triple flighted screw elements, and characteristics of various screw channel area versus screw diameter ratio, K value, in the barrel of screw extruder.

Heat Transfer Characteristics in a Leading Edge Cooling Channel of a Turbine Blade with Various Rib Arrangements (터빈 기익 선단부에 설치된 냉각유로에서의 요철 배열에 따른 열전달 특성)

  • Lee, Dong-Hyun;Kim, Kyung-Min;Rhee, Dong-Ho;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.459-466
    • /
    • 2005
  • The present study investigates the heat transfer characteristics of a triangular channel. Three different rib configurations are tested. The ribs are installed on two sides of the channel. The rib height (e) to channel hydraulic diameter is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. The rotation number ranges from 0.0 to 0.1 while the Reynolds number is fixed at 10,000. The copper blocks with heaters are installed on the channel walls to measure the regionally averaged heat transfer coefficients. For the stationary $45^{\circ}$ and $135^{\circ}$ ribbed channels, a pair of counter rotating vortices is induced by the angled rib arrangements, and high heat transfer coefficients are obtained on the regions near the inner wall for the $45^{\circ}$ ribbed channel and near the leading edge for the $90^{\circ}$ ribbed channel. The heat transfer coefficients of angled ribbed channels are changed little with rotation, whereas those of the transverse ribbed channel are changed significantly with rotation.

  • PDF

Improved Super-Orthogonal Space Time Codes for Fast Rayleigh Fading Channels (고속 레일리 페이딩 채널에 적합한 개선된 초직교 시공간 격자 부호)

  • Kim, Chang-Joong;Heo, Seo-Weon;Lee, Ho-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.820-825
    • /
    • 2007
  • Super-orthogonal space-time trellis code (SOTTC) uses the expanded set of the orthogonal space-time block code to obtain coding gain and diversity gain without loss of transmit rate. In SOSTTCs, signal set expansions are performed by rotating the first column of the code matrix. The rotating phases used previously were selected to avoid the signal constellation expansion rather than the performance improvement. In this paper, we make a design criterion to select the proper rotating phase to improve the performance of SOSTTCs for fast Rayleigh fading channels. In addition, we design improved SOSTTCs by using the proper rotating phase. Simulation results are also provided to confirm our SOSTTCs are superior to the previous SOSTTCs in the view of BER performance.

PIV Investigations of the Flow Mixing Enhancement by Pulsatile Flow in a Grooved Channel (맥동유동에 의한 그루브 채널내 유동혼합 촉진에 관한 PIV 이용 연구)

  • 김동욱;김서영;이대영;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.324-331
    • /
    • 2004
  • Particle Image Velocimetry (PIV) measurements have been carried out to investigate the pulsatile flow characteristics in a triangular grooved channel. The results showed that a vortex was generated at the tip of the groove and flowed into the groove rotating inside during the acceleration phase of the main stream promoting the mixing of the fluid. Then, at the deceleration phase of the main stream, the vortex entrained fluid from the relatively slow moving main stream to grow bigger than the groove size. Finally the vortex was ejected to the main stream carrying the fluid away from the groove, resulting in the enhancement of mixing between the stagnant fluid in the groove and the main stream in the channel. It was found that the fluid mixing enhancement is maximized when the pulsatile period is the same as the time duration which the vortex takes to grow larger enough to fill the groove and to be ejected to the main stream.