• Title/Summary/Keyword: Rotary vane compressor

Search Result 28, Processing Time 0.026 seconds

The Influence of the Vane on the Lubrication Characteristics Between the Vane and the Rolling Piston of a Rotary Compressor

  • Cho, Ihn-Sung;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2242-2249
    • /
    • 2006
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is part of a research program directed toward maximizing the advantages of refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor being used for refrigeration and air-conditioning systems was investigated. The Newton-Raphson method was used for a partial elastohydrodynamic lubrication analysis between the vane and the rolling piston of a rotary compressor. The results demonstrated that the vane thickness and the center line position of the vane significantly influenced the friction force and the energy loss between the vane and the rolling piston.

The Lubrication Characteristics of Rotary Compressor for refrigeration & air-conditioning ( Part II ; Analysis of partial elastohydrodynamic lubrication on vane tip ) (냉동,공조용 로터리 콤프레서의 윤활 특성 제2보;베인선단부의 부분 탄성유체윤활해석)

  • 김진문;조인성;백일현;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.133-141
    • /
    • 1996
  • The rolling piston type rotary compressor has become one of the most successful types because of its compactness and high-speed operation. The analysis described here is part of a research program directed toward maximising these advantages in refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for refrigeration & air-conditioning system is studied. And the Newton-Raphson method is used for the EHI. analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of shaft and the discharge pressure have an important effect upon the friction force and the energy loss between vane and rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

Analysis of Oil Supply System of a R134a Rotary Vane Compressor (R134a 로타리 베인 압축기 급유 계통 해석)

  • Kim, Ho-Young;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.113-118
    • /
    • 2008
  • For a R134a rotary vane compressor used for car air conditioners, characteristics of gas compression and oil supply have been studied. The compressor model under investigation has the low volume ratio of suction to discharge volumes so that there occur flow reversal from discharge port to compression chamber as the leading vane passes over the discharge port. As a result, the volumetric and adiabatic efficiencies turn out to be relatively low compared to other types of displacement compressors. Oil supply mechanism has been comprehended for mathematical modeling and oil flow rate has been calculated for the individual oil passages. This study on the gas compression and oil supply of a rotary vane compressor can be applied to a future design practice on a similar type of compressor.

  • PDF

Rotary compressor with combined vane and roller (베인-롤러 일체형 로타리 압축기)

  • Ahn, Jong-Min;Kim, Hyun-Jin;Kang, Seoung-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.904-909
    • /
    • 2009
  • In this paper, a rolling piston rotary compressor having a combined vane and roller unit has been introduced. In a conventional rotary compressor, sliding motion takes place between the vane nose and roller. By combining the vane and the roller in one unit, gas leakage through a clearance between the vane nose and the roller can be eliminated, and the frictional loss between them can also be reduced to almost nought. Compressor model with the combined vane and roller has been fabricated and tested in a compressor calorimeter and computer simulation program has been developed to confirm merits of the new mechanism. In a test, cooling capacity has been found to be increased by 1.4%, and the compressor input decreased by 0.3%, resulting in 1.7% increased in EER. Simulation program confirmed the calorimeter test results and the merits of the new model as mentioned above.

  • PDF

Lubrication Characteristics Between the Vane and the Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems

  • Jung, Jae-Youn;Oh, Seok-Hyung;Cho, Ihn-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.562-568
    • /
    • 2001
  • The rolling piston type-rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is part of a research program directed toward maximizing the advantages of refrigerant compressors. The study of lubrication characteristics in critical sliding components is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems was studied. The Newton-Raphson method was used for the partial elastohydrodynamic lubrication analysis between the vane and the rolling piston of a rotary compressor. The results showed that the rotational speed of a shaft and the discharge pressure significantly influence the friction force and the energy loss between the vane and the rolling piston.

  • PDF

The Lubrication Characteristics of a Rotary Compressor Used for Refrigeration and Air-conditioning Systems (Part III; Analysis of partial elastohydrodynamic lubrication on vane tip)

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.138-145
    • /
    • 2001
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is a part of research program directed toward maximizing these advantages of refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems is studied. Newton-Raphson method is used for the partial elastohydrodynamic lubrication analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of a shaft and the discharge pressure influence significantly the friction force and the energy loss between vane and rolling piston.

Analytical Study on the Performance of a Rotary Vane Compressor (로타리 베인 공기압축기의 성능에 관한 수치해석)

  • Kim Hyun-Jin;Nam Bo-Young;Lee Gyeong-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.351-358
    • /
    • 2006
  • This paper presents analytical results of a rotary vane compressor performance when the compressor is used for air supply from underwater. Compression characteristics such as pressure and temperature in a compression chamber are analyzed. Volumetric and adiabatic efficiencies are calculated. Vane dynamics are also performed to give reaction forces on the vane from the cylinder inner surface and from vane slots. Compressor efficiency is about 34.9%, and about 55% of the compressor loss is produced by the friction between the vane nose and the cylinder wall. Volumetric efficiency is about 79.5%, and indicated efficiency is about 77.1%, which are comparable to other displacement type compressors. When roller was introduced between housing inner wall and vane tips, mechanical efficiency could be improved by as much as 24.9%, depending on the roller friction.

Design of Vane Rotary Air Compressor for Fuel Cell Application (연료전지용 베인 로타리 공기 압축기 설계)

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kim, Ho-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Air supply is required to the cathode of fuel cells for the provision of oxygen to produce electricity through chemical reaction with hydrogen in the cell, and supplied air should be free of impurities such as oil mist and tiny particles separated from sliding surfaces. Hence, air compressor for fuel cell air supply must be oil-less type and have no severe sliding surfaces inside. This paper introduces the concept of single-vane type rotary air compressor whose structure is particularly suitable for the fuel cell application: sliding action of the vane against the cylinder wall, which causes severe friction in the conventional vane rotary compressors, is made to be prevented by attaching the vane to the driving shaft with the compliant device between the vane and the rotor in this new design. For 2 kW fuel cell application, preliminary design has been carried out, and its performance has been estimated by using computer simulation program: for discharge pressure of 2 bar, the volumetric, adiabatic, and mechanical efficiencies are calculated to be 82.5%, 92.5%, and 96.3%, respectively.

The lubrication Characteristics of a Rotary Compressor used for Refrigeration and Air-conditioning Systems Park II: Analysis of elastohydrodynamic lubrication on vane tip (냉동${\cdot}$공조용 로터리 콤프레서의 윤활 특성 제2보:베인 선단부의 탄성 유체 윤활 특성 해석)

  • Cho, Ihn-Sung;Oh, Seok-Hyung;Jung, Jae-Youn
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.62-69
    • /
    • 1997
  • Rapid increase of refrigeration and air-conditioning systems 9r & a systems) in modern industries brings attention to the urgency of research & development as a core technology in the area. And it is required to the compatibility problem of r & a systems to alternative refrigerant for the protection of environment. The, it is requested to study the lubrication characteristics of refrigerant compressor which is the core technology in the r & a systems. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for r & a systems is studied. The newton-Raphson method is used for the EHL analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of a shaft and the discharge pressure influence significantly the friction force between vane and rolling piston. This results give important basic data for the further lubrication analysis and design of a rotary compressor.

Friction Characteristics Between Vane and Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems

  • Cho, Ihn-Sung;Baek, Il-Hyun;Oh, Seok-Hyung;Jung, Jae-Youn
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.17-21
    • /
    • 2008
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present study is one of studies to maximize the advantages of refrigerant compressors. In addition, because friction characteristics of the critical sliding component is essential in the design of refrigerant compressors, the present study also analyzed the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems. In order to measure the friction force between the vane and the rolling piston, an experimental apparatus known as the Pin-on-Disk was used. Load is applied by the hydraulic servo valve controlling the pressure of the hydraulic cylinder. The results showed that the rotational speed of the shaft, the operating temperature, and the discharge pressure significantly influenced the friction force between the vane and the rolling piston.