• 제목/요약/키워드: Rotary mechanism

검색결과 110건 처리시간 0.029초

회전형 초음파 모터의 Contact Mechanism을 고려한 해석 및 설계 (Analysis and Design of a Rotary Ultrasonic Motor Considering Contact Mechanism)

  • 이경표;노종석;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.866-867
    • /
    • 2007
  • 최근의 소형화 추세에 따라 소형 액추에이터에 대한 수요가 늘고 있다. 여러 가지 액추에이터 중 특히 초음파 모터(USM)는 소형화하기에 용이한 특성을 가지고 있다. 지금까지 USM의 contact mechanism에 대한 수많은 연구가 있었지만, 아직 확립된 해석방법이 존재하지 않는다. 본 논문에서는 수치적 방법과 해석적 방법을 결합하여 지름 9[mm]의 링타입 회전형 초음파 모터(RUSM)를 분석하였다. 이 방법을 사용함으로써 모터의 특성을 쉽고 빠르고 정확하게 분석할 수 있다. 분석된 결과는 실험 결과와 비교함으로써 검증하였다.

  • PDF

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

MR 햅틱 큐를 이용한 차량 기어변속 보조장치의 성능평가 (Performance Evaluation of Vehicle Gear-shifting Supportive Device Utilizing MR Haptic Cue)

  • 한영민;민철기
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.160-166
    • /
    • 2013
  • This paper proposes a driver supportive device with haptic cue function which can be applicable for vehicles adopting manual transmission system to transmit gear-shifting information to a driver by kinesthetic forces. This haptic cue function is implemented on accelerator pedal by utilizing magnetorheological(MR) fluid and clutch mechanism. In order to achieve this goal, an MR clutch mechanism is devised to be capable of rotary motion of accelerator pedal. The proposed MR clutch is then optimally designed and manufactured under consideration of spatial limitation of vehicles. After transmission torque is experimentally evaluated according to field intensity. The manufactured MR clutch is integrated with accelerator pedal and electric motor to establish the haptic cue device. Control performances are experimentally evaluated via a simple feed-forward control algorithm.

혼합형 마찰댐퍼 구조성능에 대한 실험적 연구 (Experimental Study on the Structural Performance of Hybrid Friction Damper)

  • 김도현;김지영
    • 한국공간구조학회논문집
    • /
    • 제15권3호
    • /
    • pp.103-110
    • /
    • 2015
  • Various hybrid dampers have been developed as increasing tall buildings in Korea. To minimize the installment space and cost, the new hybrid friction damper was developed using friction components. It is composed of two one-nodal rotary frictional components and a slotted bolted frictional connection. Because of these components, hybrid friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, displacement amplitude dependency tests were carried out to evaluate on the structural performance and the multi-slip mechanism of the hybrid damper. Test results show that the multi-slip mechanism is verified and friction coefficients are increasing as displacement amplitudes are increasing.

SMART용 제어봉구동장치에 장착되는 위치측정기의 전자장해석 (Electromagnetic Analysis of Angular Position Detector for SMART Control Element Drive Mechanism)

  • 허형;김건중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.309-311
    • /
    • 2000
  • An advanced angular position detector (APD) for the SMART CEDM (control element drive mechanism) was designed. The APD is required to be small size with high resolution for angular displacement of rotary step motor. Unfortunately the proximity sensors can not be adopted to SMART CEDM because the motor shaft is located in the pressure boundary cylinder filled with the primary coolant under high temperature and pressure. This paper describes the electromagnetic finite element analysis for the design of advanced angular position detector for the SMART CEDM. The electromagnetic properties obtained will be used as Input for the optimization analysis of the APD.

  • PDF

6자유도 측정 장치를 이용한 병렬 기구의 캘리브레이션 실험 결과 (Experimental Results on Kinematic Calibration of Parallel Manipulator using 6 DOF Measurement Device)

  • 압둘 라우프;아슬람 퍼베즈;김현호;류제하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.197-203
    • /
    • 2005
  • This paper presents kinematic calibration of parallel manipulators with partial pose measurements using a device that measures a rotation of the end-effector along with its position. The device contains an LVDT, a biaxial inclinometer, and a rotary sensor and facilitates automation of the measurement procedure. The device is designed in a modular fashion and links of different lengths can be used. The additional kinematic parameters required for the measurement device are discussed, kinematic relations are derived, and cost function is established to perform calibration with the proposed device. The study is performed for a six degree-of-freedom(DOF) fully parallel HexaSlide Mechanism(HSM). Experimental results show significant improvement in the accuracy of the HSM.

  • PDF

Compact electromagnetic vibration suppressor and energy harvester; an experimental study

  • Aref Afsharfard;Hooman Zoka;Kyung Chun Kim
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.217-225
    • /
    • 2024
  • In this study, an electromagnetic dynamic vibration suppressor and energy harvester is designed and studied. In this system, a gear mechanism is used to convert the linear motion to continuous rotary motion. Governing equations of motion for the system are derived and validated using the experimental results. Effects of changing the main parameters of the presented system, such as mass ratio, stiffness ratio and gear ratio on the electro-mechanical behavior of system are investigated. Moreover, using so-called Weighted Cost Function, the optimum parameters of the system are obtained. Finally, it is shown that the presented electromagnetic dynamic vibration absorber not only can reduce the undesired vibration of the main system but also it can harvest acceptable electrical energy.

회전형 역 진자 시스템에 대한 계층적 공정 경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계 (Design of Optimized Fuzzy Controller by Means of HFC-based Genetic Algorithms for Rotary Inverted Pendulum System)

  • 정승현;최정내;오성권
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.236-242
    • /
    • 2008
  • 본 논문은 회전형 역 진자 시스템(Rotary Inverted Pendulum System : RIPS)에 대한 계층적 공정 경쟁 기반 유전자 알고리즘(Hierarchical Fair Competition-based Genetic Algorithms : HFCGA) 기반 최적 퍼지 제어기 설계를 제안한다. 회전형 역 진자 시스템의 제어를 위해 퍼지제어기를 사용하였으며, 이때 퍼지제어기의 규칙은 LQR(Linear Quadratic Regulator) 제어기를 기반으로 하여 설계하였다. 유전자 알고리즘은 전역해를 구할 수 있는 장점이 있어 많은 분야에 성공적으로 적용되고 있지만 조기수렴 문제로 인하여 지역해에 빠질 수 있다. 이러한 문제를 해결하기 위하여 병렬유전자 알고리즘이 개발되었으며, HFCGA는 병렬유전자 알고리즘을 개선한 방법 중의 하나이다. 본 논문에서는 퍼지 제어기의 파라미터의 최적화를 위해 계층적 공정 경쟁 기반 유전자 알고리즘을 사용하였다. 시뮬레이션 및 실험을 통하여 LQR 제어기, 기존 단순유전자 알고리즘(SGA)을 이용한 퍼지제어기와 제안된 HFCGA 기반 퍼지제어기의 성능 비교를 통하여 제안된 방법의 우수성을 보인다.

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.