• Title/Summary/Keyword: Rotary Specimen Rack

Search Result 10, Processing Time 0.031 seconds

Natural Frequencies and Modes of Rotary Specimen Rack(RSR) in a Still Fluid (정지 유체 내에 있는 회전시료 조사대의 고유진동수 및 모드 해석)

  • Kim, Sung-Kyun;Lee, Dong-Kyu;Lee, Kune-Woo;Park, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1317-1323
    • /
    • 2003
  • In this paper, In-air and in-water vibration characteristics of Rotary Specimen Rack(RSR) are estimated through 3D finite element analysis by using ANSYS software. Added mass is calculated by using Blevins' equation. To confirm the accuracy of the results presented in this study, obtained results are compared to those of using a theoretical equation. It is confirmed that in-water natural frequencies of the RSR are lower than in-air ones due to tile added mass effect of the fluid. Also, good agreement is founded between natural frequency ratios obtained by a theoretical equation and those of using ANSYS.

3D Graphic Simulation on the Dismantling Process of the KRR-2 (연구용 원자로 2호기 해체과정 전산모사)

  • Kim, Sung-Kyun;Jung, Un-Soo;Lee, Kune-Woo;Park, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1199-1204
    • /
    • 2003
  • The 3D simulations of the shielding concrete and the Rotary Specimen Rack(RSR) in the Korea Research Reactor-1&2(KRR-1&2) were carried out in present work. Four main dismantling processes, which are the removal of the RSR, reactor core region, beam tube, and thermal column and activated concrete, were selected for the graphic simulation by the consideration of the activation, worker training, work difficulty and so on. On the basis of these, we constructed their 3D CAD models and then drawn and reviewed their dismantling processes. In this study, the 3D simulation results of the shielding concrete and the RSR among main components are also presented and discussed.

  • PDF

Vibration Analysis of Rotary Specimen Rack (RSR) in a Still Fluid and Stress Analysis of Clamp Part of RSR (정지 유체 내에 있는 회전시료조사대의 진동해석 및 지지부의 응력해석)

  • 김성균;이동규;이근우;정운수;박진호
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • In this paper, in-air and in-water vibration characteristics of Rotary Specimen Rack (RSR) are estimated through 3D finite element modeling by using ANSYS software. Added mass is calculated by using Blevins' equation. To confirm the reasonability of the results presented in this study, obtained results are compared to those of using a theoretical equation. It is confirmed that in-water natural frequencies of the RSR are lower than in-air ones due to the added mass effect of the fluid. Also, to design clamp which needs to fix RSR, Von-Mises stress and displacement of RSR to clamp pressure are calculated.

Design of 4-axes Milling Machine for Underwater Milling of Nuclear Reactor Parts (원자로 부품의 수중 밀링 가공을 위한 4축 밀링 머신의 설계)

  • 이동규;이기용;김성균;이근우;박진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.351-354
    • /
    • 2003
  • A new milling machine was designed and manufactured for underwater cutting of rotary specimen racks(RSR) used in the Korea Research Reactor. To cut out intermediate level radioactive stainless steel parts from RSR effectively and safely, the machine was designed to be operated in four directions of X, Y, Z axes and a rotation upon Z axis. The stress and displacement of main frame were simulated by using a structural analysis tool(Design Space) and the pressure of clamping device was evaluated.

  • PDF

3D Dynamic Simulation for the Dismantling Process of the KRR-2

  • Kim, Sung-Kyun;Jeong, Kawn-Seong;Lee, Kune-Woo;Park, Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.114-129
    • /
    • 2004
  • The 3D simulations for the Rotary Specimen Rack (RSR), the shielding concret, and the reactor core dismantling processes in the Korea Research Reactor-1&2(KRR-1&2) were carried out in the present work. The four main dismantling items, which are the RSR, reactor core, beam tube, and the thermal column and the shield concrete, were selected among the many components in the KRR-2 by consideration of the activation, worker training, difficulty of the work and so on. On the basis of these, we built 3D CAD models, selected the proper dismantling technologies, and reviewed their dismantling processes. In this study, the 3D simulation results of the shielding concrete, and the reactor core dismantling processes are also presented and discussed.

  • PDF

Experience for The Decontamination & Decommissioning of The Core Assembly of KRR-2 Research Reactor (연구용 원자로 2호기의 로심 집합체 제염$\cdot$해체 경험)

  • 정경환;정기정;박진호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.655-659
    • /
    • 2003
  • The research reactor (TRIGA Mark-III(KRR-2)) was constructed and had been operated in 1972. In 1999 the radioisotope process units had stopped its operation due to normal operation of HANARO. In 2003 the core assembly was decommissioned by D&D program. The contact exposure rate on the core assembly and the rotary specimen rack are from 300mSv/h to 700mSv/h. This report describes the decontaminationing procedures, the health physics programs, and the waste management.

  • PDF

Calculation of Nuclear Characteristics of the TRIGA Mark-III Reactor (TRIGA Mark-III 원자로의 노심특성계산)

  • Chong Chul Yook;Gee Yang Han;Byung Jin Jun;Ji Bok Lee;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.264-276
    • /
    • 1981
  • A simulation procedure which can represent time-dependent nuclear characteristics of TRIGA Mark-III reactor is developed. CITATION, a multi-group diffusion-depletion program, has been utilized as calculational tool. The group structure employed in this study consists of 7 groups: -3-fast and 4-thermal-which is conventionally utilized in TRIGA type reactor analysis. Three-dimensional nuclear characteristics are synthesized by combining results from two-dimensional plane calculation and two-dimensional cylinder calculation, since direct three-dimensional approach is not yet possible. An effort ia made to develope a method which can extract effective zone and group dependent bucklings by neutron diffusion theory rather than conventional zone and/or group independent Ducklings by neutron transport theory, since neutron leakage is quite high for small core such as research reactors. It is turned out that the method developed in this study gives satisfactory results. The calculation is performed under assumptions that all control rods are fully withdrawn, that no samples are inserted in the irradiation holes and that the core is located in the center of the reactor pool. Burnup-dependent variation of core excess reactivity, time dependent change of Xe-135 poisoning and reactivity worth of rotary specimen rack are calculated and compared with operation records. Neutron flux and power distribution as well as neutron spectrum in each irradiation .facility are presented.

  • PDF