• Title/Summary/Keyword: Root-mean-square-error method

Search Result 432, Processing Time 0.029 seconds

DOD/DOA Estimation for Bistatic MIMO Radar Using 2-D Matrix Pencil Method (2차원 Matrix Pencil Method 기반의 바이스태틱 MIMO 레이더 표적 도래각 추정)

  • Lee, Kang-In;Kang, Wonjune;Yang, Hoon-Gee;Chung, Wonzoo;Kim, Jong Mann;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.782-790
    • /
    • 2014
  • In this paper, we apply the 2-D Matrix Pencil Method(MPM) to the estimation of the direction of arrival(DOA) of multiple signals of interest(SOIs) in bistatic MIMO radar. The 2-D MPM shows remarkable performance under a low SNR environment and low computational complexity to estimate the DOA of multiple SOIs. Also, it is possible to estimate the direction of departure(DOD) which is an angle from transmitter to target. To verify the proposed algorithm, we applied the proposed algorithm to a uniformly spaced linear array(ULA) and compared the RMSE(Root Mean Square Error) of DOA and DOD under the various SNR with those of the 2-D Capon algorithm.

A Comparative Study on Lowflow Quantiles Estimation in Han River Basin (한강유역의 확률갈수량 추정기법 비교연구)

  • Kim, Kyung-Duk;Kim, Don-Soo;Heo, Jun-Haeng;Kim, Kyu-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.315-324
    • /
    • 2003
  • Stream flow data was analyzed for determining the lowflow which is the standard for river maintenance flow. Lowflow quantiles were estimated based on the parametric and nonparametric methods and two methods were compared by Monte Carlo simulation study. As the results of the parametric method, three probability distributions such as gamma-2, lognormal-2 and Weibull-2, are selected as appropriate models for stream flow data of 13 stations in Han River Basins. According to simulation results, relative bias (RBIAS) and relative root mean square error (RRMSE) of the lowflow quantiles are the smallest when the applied and population models are the same. The fame statistical properties from the nonparametric models are good within the interpolation range. Among 7 bandwidth selectors used in this study, the RRMSEs of the Park and Marron method (PM) are the smallest while those of the Shoaler and Jones method (SJ) are the largest.

A Rotation Angle Estimation Method Based on Phase of ART (ART의 위상정보를 이용한 회전각도 추정 방법)

  • Lee, Jong-Min;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.81-94
    • /
    • 2012
  • Several methods which utilize the phase of Zernike moments (ZMs) to estimate the rotation angle have shown good performance in terms of accuracy. In this paper, we provides the performance comparison results of the existing rotation angle estimation methods based on ZMs and propose an extension of Revaud et al.'s method [1] which utilizes the phase of ZMs; the proposed method uses angular radial transform coefficients instead of ZMs and yields better performance than the ZMs based methods in terms of accuracy. A set of ART can describe angular variation of image more intensively than ZMs, it enables more accurate estimation of the rotation angle than ZMs. In the experiments, the proposed method outperforms ZMs based method. Comparisons were made in terms of the root mean square error vs. the coverage on MPEG-7 shape dataset.

An Improved Frequency Modeling Corresponding to the Location of the Anjok of the Gayageum (가야금 안족의 위치에 따른 개선된 주파수 모델링)

  • Kwon, Sundeok;Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.146-151
    • /
    • 2014
  • This paper analyzes the previous Anjok model of the Gayageum and describes a method to improve the frequency modeling based on previous model. In the previous work, relation between the fundamental frequency and Anjok's location on the body is assumed as an exponential function and these frequencies are integrated by a first-order leaky integrator. Finally, a parameter of the formula to calculate the fundamental frequency is obtained by applying integrated frequencies to the linear regression. This model shows 2.5 Hz absolute deviation on average and has maximum error 7.75 Hz for the low fundamental frequencies. In order to overcome this problem, this paper proposes that the Anjok's locations are grouped according to the rate of error increase and linear regression is applied to each group. To find the optimal parameter, the RMSE(Root Mean Square Error) between measured and calculated fundamental frequencies is used. The proposed model shows substantial reduction in errors, especially maximum three times.

Interface Matrix Method in AFEN Framework

  • Leonid Pogosbekyan;Cho, Jin-Young;Kim, Young-Jin;Noh, Jae-Man;Joo, Hyung-Kook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.19-24
    • /
    • 1997
  • In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN fomular. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006%Δk of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method.

  • PDF

Equilibrium Moisture Contents and Thin Layer Drying Equations of Cereal Grains and Mushrooms (II) - for Oak Mushroom (Lentinus erodes) - (곡류 및 버섯류의 평형함수율 및 박층건조방정식에 관한 연구(II) - 표고버섯에 대하여 -)

  • Keum, D. H.;Kim, H.;Hong, N. U.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.219-226
    • /
    • 2002
  • Desorption equilibrium moisture contents of oak mushroom were measured by the static method using salt solutions at flour temperature levels of 35$\^{C}$, 45$\^{C}$, 55$\^{C}$ and 6$\^{C}$ and five relative humidity levels in the range from 11.0% to 90.8%. EMC data were fitted to the modified Henderson, Chung-Pfost, modified Halsey and modified Oswin models using nonlinear regression analysis. Drying tests far oak mushroom were conducted in an experimental dryer equipped with air conditioning unit. The drying test were performed in triplicate at flour air temperatures of 35$\^{C}$, 45$\^{C}$, 55$\^{C}$ and 65$\^{C}$ and three relative humidities of 30%, 50% and 70% respectively. Measured moisture ratio data were fitted to the selected four drying models(Lewis, Page, simplified diffusion and Thompson models) using stepwise multiple regression analysis. The results of comparing root mean square errors for EMC models showed that modified Halsey was the best model, and modified Oswin models could be available far oak mushroom. The results of comparing coefficients of determination and root mean square errors of moisture ratio for four drying models showed that Page model were found to fit adequately to all drying test data with a coefficient of determination of 0.9990 and root mean square error of moisture ratio of 0.00739.

Fuzzy logic approach for estimating bond behavior of lightweight concrete

  • Arslan, Mehmet E.;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • In this paper, a rule based Mamdani type fuzzy logic model for prediction of slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes were discussed. In the model steel rebar diameters and development lengths were used as inputs. The FL model and experimental results, the coefficient of determination R2, the Root Mean Square Error were used as evaluation criteria for comparison. It was concluded that FL was practical method for predicting slippage at maximum tensile strength and slippage at rupture of structural lightweight concretes.

Prediction of Stand Volume and Carbon Stock for Quercus variabilis Using Weibull Distribution Model (Weibull 분포 모형을 이용한 굴참나무 임분 재적 및 탄소저장량 추정)

  • Son, Yeong Mo;Pyo, Jung Kee;Kim, So Won;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.599-605
    • /
    • 2012
  • The purpose of this study is to estimate diameter distribution, volume per hectare, and carbon stock for Quercus variabilis stand. 354 Quercus variabilis stands were selected on the basis of age and structure, the data and samples for these stands are collected. For the prediction of diameter distribution, Weibull model was applied and for the estimation of the parameters, a simplified method-of-moments was applied. To verify the accuracy of estimates, models were developed using 80% of the total data and validation was done on the remaining 20%. For the verification of the model, the fitness index, the root mean square error, and Kolmogorov-Smirnov statistics were used. The fitness index of the site index, height, and volume equation estimated from verification procedure were 0.967, 0.727, and 0.988 respectively and the root mean square error were 2.763, 1.817, and 0.007 respectively. The Kolmogorov-Smirnov test applied to Weibull function resulted in 75%. From the models developed in this research, the estimated volume and above-ground carbon stock were derived as $188.69m^3/ha$, 90.30 tC/ha when site index and stem number of 50-years-old Quercus variabilis stand show 14 and 697 respectively. The results obtained from this study may provide useful information about the growth of broad-leaf species and prediction of carbon stock for Quercus variabilis stand.

Designing of the Beheshtabad water transmission tunnel based on the hybrid empirical method

  • Mohammad Rezaei;Hazhar Habibi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.621-633
    • /
    • 2023
  • Stability analysis and support system estimation of the Beheshtabad water transmission tunnel is investigated in this research. A combination approach based on the rock mass rating (RMR) and rock mass quality index (Q) is used for this purpose. In the first step, 40 datasets related to the petrological, structural, hydrological, physical, and mechanical properties of tunnel host rocks are measured in the field and laboratory. Then, RMR, Q, and height of influenced zone above the tunnel roof are computed and sorted into five general groups to analyze the tunnel stability and determine its support system. Accordingly, tunnel stand-up time, rock load, and required support system are estimated for five sorted rock groups. In addition, various empirical relations between RMR and Q i.e., linear, exponential, logarithmic, and power functions are developed using the analysis of variance (ANOVA). Based on the significance level (sig.), determination coefficient (R2) and Fisher-test (F) indices, power and logarithmic equations are proposed as the optimum relations between RMR and Q. To validate the proposed relations, their results are compared with the results of previous similar equations by using the variance account for (VAF), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE) indices. Comparison results showed that the accuracy of proposed RMR-Q relations is better than the previous similar relations and their outputs are more consistent with actual data. Therefore, they can be practically utilized in designing the tunneling projects with an acceptable level of accuracy and reliability.

Distance Estimation Method using Enhanced Adaptive Fuzzy Strong Tracking Kalman Filter Based on Stereo Vision (스테레오 비전에서 향상된 적응형 퍼지 칼만 필터를 이용한 거리 추정 기법)

  • Lim, Young-Chul;Lee, Chung-Hee;Kwon, Soon;Lee, Jong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.108-116
    • /
    • 2008
  • In this paper, we propose an algorithm that can estimate the distance using disparity based on stereo vision system, even though the obstacle is located in long ranges as well as short ranges. We use sub-pixel interpolation to minimize quantization errors which deteriorate the distance accuracy when calculating the distance with integer disparity, and also we use enhanced adaptive fuzzy strong tracking Kalman filter(EAFSTKF) to improve the distance accuracy and track the path optimally. The proposed method can solve the divergence problem caused by nonlinear dynamics such as various vehicle movements in the conventional Kalman filter(CKF), and also enhance the distance accuracy and reliability. Our simulation results show that the performance of our method improves by about 13.5% compared to other methods in point of root mean square error rate(RMSER).