• Title/Summary/Keyword: Root-mean-square-error method

Search Result 435, Processing Time 0.031 seconds

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

Calibration of Portable Particulate Mattere-Monitoring Device using Web Query and Machine Learning

  • Loh, Byoung Gook;Choi, Gi Heung
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.452-460
    • /
    • 2019
  • Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.

Spatial Estimation of Forest Species Diversity Index by Applying Spatial Interpolation Method - Based on 1st Forest Health Management data- (공간보간법 적용을 통한 산림 종다양성지수의 공간적 추정 - 제1차 산림의 건강·활력도 조사 자료를 이용하여 -)

  • Lee, Jun-Hee;Ryu, Ji-Eun;Choi, Yu-Young;Chung, Hye-In;Jeon, Seong-Woo;Lim, Jong-Hwan;Choi, Hyung-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.4
    • /
    • pp.1-14
    • /
    • 2019
  • The 1st Forest Health Management survey was conducted to examine the health of the forests in Korea. However, in order to understand the health of the forests, which account for 63.7% of the total land area in South Korea, it is necessary to comprehensively spatialize the results of the survey beyond the sampling points. In this regard, out of the sample points of the 1st Forest Health Management survey in Gyeongbuk area, 78 spots were selected. For these spots, the species diversity index was selected from the survey sections, and the spatial interpolation method was applied. Inverse distance weighted (IDW), Ordinary Kriging and Ordinary Cokriging were applied as spatial interpolation methods. Ordinary Cokriging was performed by selecting vegetation indices which are highly correlated with species diversity index as a secondary variable. The vegetation indices - Normalized Differential Vegetation Index(NDVI), Leaf Area Index(LAI), Sample Ratio(SR) and Soil Adjusted Vegetation Index(SAVI) - were extracted from Landsat 8 OLI. Verification was performed by the spatial interpolation method with Mean Error(ME) and Root Mean Square Error(RMSE). As a result, Ordinary Cokriging using SR showed the most accurate result with ME value of 0.0000218 and RMSE value of 0.63983. Ordinary Cokriging using SR was proven to be more accurate than Ordinary Kriging, IDW, using one variable. This indicates that the spatial interpolation method using the vegetation indices is more suitable for spatialization of the biodiversity index sample points of 1st Forest Health Management survey.

A Study on the Reproduction of 3-Dimensional Building Model from Single High Resolution Image without Meta Information (메타정보 없는 단일 고해상도 영상으로부터 3차원 건물 모델 생성에 관한 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2009
  • We expanded the 3D building information extraction method using shadow and vertical line from single high resolution image with meta information into the method for single high resolution image without meta information. Our method guesses an azimuth angle and an elevation angle of the sensor and the sun using reference building, selected by user, on an image. For test, we used an IKONOS image and an image extracted from the Google Earth. We calculated the Root Mean Square (RMS) error of heights extracted by our method using the building height extracted from stereo IKONOS image as reference, and the RMS error from the IKONOS image and the Google Earth image was under than 3 m. We also calculated the RMS error of horizontality position by comparison between building position extracted from only the IKONOS image and it from 1:1,000 digital map, and the result was under than 3 m. This test results showed that the height pattern of building models by our method was similar with it by the method using meta information.

  • PDF

Development of GPS Multipath Error Reduction Method Based on Image Processing in Urban Area (디지털 영상을 활용한 도심지 내 GPS 다중경로오차 경감 방법 개발)

  • Yoon, Sung Joo;Kim, Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • To determine the position of receiver, the GPS (Global Positioning System) uses position information of satellites and pseudo ranges based on signals. These are reflected by surrounding structures and multipath errors occur. This paper proposes a method for multipath error reduction using digital images to enhance the accuracy. The goal of the study is to calculate the shielding environment of receiver using image processing and apply it to GPS positioning. The proposed method, firstly, performs a preprocessing to reduce the effect of noise on images. Next, it uses hough transform to detect the outline of building roofs and determines mask angles and permissible azimuth range. Then, it classifies the satellites according to the condition using the image processing results. Finally, base on point positioning, it computes the receiver position by applying a weight model that assigns different weights to the classified satellites. We confirmed that the RMSE (Root Mean Square Error) was reduced by 2.29m in the horizontal direction and by 15.62m in the vertical direction. This paper showed the potential for the hybrid of GPS positioning and image processing technology.

A study on the estimation of potential yield for Korean west coast fisheries using the holistic production method (HPM) (통합생산량분석법에 의한 한국 서해 어획대상 잠재생산량 추정 연구)

  • KIM, Hyun-A;SEO, Yong-Il;CHA, Hyung Kee;KANG, Hee-Joong;ZHANG, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.1
    • /
    • pp.38-53
    • /
    • 2018
  • The purpose of this study is to estimate potential yield (PY) for Korean west coast fisheries using the holistic production method (HPM). HPM involves the use of surplus production models to apply input data of catch and standardized fishing efforts. HPM compared the estimated parameters of the surplus production from four different models: the Fox model, CYP model, ASPIC model, and maximum entropy model. The PY estimates ranged from 174,232 metric tons (mt) using the CYP model to 238,088 mt using the maximum entropy model. The highest coefficient of determination ($R^2$), the lowest root mean square error (RMSE), and the lowest Theil's U statistic (U) for Korean west coast fisheries were obtained from the maximum entropy model. The maximum entropy model showed relatively better fits of data, indicating that the maximum entropy model is statistically more stable and accurate than other models. The estimate from the maximum entropy model is regarded as a more reasonable estimate of PY. The quality of input data should be improved for the future study of PY to obtain more reliable estimates.

Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System (신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.

Raman spectroscopic analysis to detect olive oil mixtures in argan oil

  • Joshi, Rahul;Cho, Byoung-Kwan;Joshi, Ritu;Lohumi, Santosh;Faqeerzada, Mohammad Akbar;Amanah, Hanim Z;Lee, Jayoung;Mo, Changyeun;Lee, Hoonsoo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.183-194
    • /
    • 2019
  • Adulteration of argan oil with some other cheaper oils with similar chemical compositions has resulted in increasing demands for authenticity assurance and quality control. Fast and simple analytical techniques are thus needed for authenticity analysis of high-priced argan oil. Raman spectroscopy is a potent technique and has been extensively used for quality control and safety determination for food products In this study, Raman spectroscopy in combination with a net analyte signal (NAS)-based methodology, i.e., hybrid linear analysis method developed by Goicoechea and Olivieri in 1999 (HLA/GO), was used to predict the different concentrations of olive oil (0 - 20%) added to argan oil. Raman spectra of 90 samples were collected in a spectral range of $400-400cm^{-1}$, and calibration and validation sets were designed to evaluate the performance of the multivariate method. The results revealed a high coefficient of determination ($R^2$) value of 0.98 and a low root-mean-square error (RMSE) value of 0.41% for the calibration set, and an $R^2$ of 0.97 and RMSE of 0.36% for the validation set. Additionally, the figures of merit such as sensitivity, selectivity, limit of detection, and limit of quantification were used for further validation. The high $R^2$ and low RMSE values validate the detection ability and accuracy of the developed method and demonstrate its potential for quantitative determination of oil adulteration.

Comparative analysis of spatial interpolation methods of PM10 observation data in South Korea (남한지역 PM10 관측자료의 공간 보간법에 대한 비교 분석)

  • Kang, Jung-Hyuk;Lee, Seoyeon;Lee, Seung-Jae;Lee, Jae-Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.124-132
    • /
    • 2022
  • This study was aimed to visualize the spatial distribution of PM10 data measured at non-uniformly distributed observation sites in South Korea. Different spatial interpolation methods were applied to irregularly distributed PM10 observation data from January, 2019, when the concentration was the highest and in July, 2019, when the concentration was the lowest. Four interpolation methods with different parameters were used: Inverse Distance Weighted (IDW), Ordinary Kriging (OK), radial base function, and scattered interpolation. Six cases were cross-validated and the normalized root-mean-square error for each case was compared. The results showed that IDW using smoothing-related factors was the most appropriate method, while the OK method was least appropriate. Our results are expected to help users select the proper spatial interpolation method for PM10 data analysis with comparative reliability and effectiveness.

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.