• Title/Summary/Keyword: Root mean square value

Search Result 386, Processing Time 0.038 seconds

Path Loss Model with Multiple-Antenna (다중 안테나를 고려한 경로 손실 모델)

  • Lee, Jun-Hyun;Lee, Dong-Hyung;Keum, Hong-Sik;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.747-756
    • /
    • 2014
  • In this paper, we propose a path loss model with the multiple antennas using diversity effect. Currently wireless communication systems use the multiple antennas in order to improve the channel capacity or diversity gain. However, until recently, many researches on path loss model only consider geographical environment between the transmitter and the receiver. There is no study about path loss model considering diversity effect. Nowaday wireless communication use the multiple antennas and we in common find examples using diversity scheme that is method in order to enhance a channel capacity. Moreover we anticipate that it work harder in future researches. But in this communication system, path loss model isn't established that predict strength of received signal. So, in order to predict strength of received signal, we take changing SNR by diversity gain. When exceeding the number of antennas of receiver are 7 in proposed model, diversity effect is saturated. Therefore we consider the number of antenna of receiver until 10. We find RMSE between proposed model and value of calculation is 1. We calculate the diversity gain by conventional BER curve. Proposed model can predict loss of received signal in system using multiple antennas.

Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

  • Jayanegara, Anuraga;Wina, Elizabeth;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1426-1435
    • /
    • 2014
  • Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins produced less methane per unit of total gas than that of control (p<0.05). Although numerically the order of effectiveness of saponin-rich sources in mitigating methane was yucca>tea>quillaja, statistically they did not differ each other. It can be concluded that methane mitigating properties of saponins in the rumen are level- and source-dependent.

Optimized DSP Implementation of Audio Decoders for Digital Multimedia Broadcasting (디지털 방송용 오디오 디코더의 DSP 최적화 구현)

  • Park, Nam-In;Cho, Choong-Sang;Kim, Hong-Kook
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.452-462
    • /
    • 2008
  • In this paper, we address issues associated with the real-time implementation of the MPEG-1/2 Layer-II (or MUSICAM) and MPEG-4 ER-BSAC decoders for Digital Multimedia Broadcasting (DMB) on TMS320C64x+ that is a fixed-point DSP processor with a clock speed of 330 MHz. To achieve the real-time requirement, they should be optimized in different steps as follows. First of all, a C-code level optimization is performed by sharing the memory, adjusting data types, and unrolling loops. Next, an algorithm level optimization is carried out such as the reconfiguration of bitstream reading, the modification of synthesis filtering, and the rearrangement of the window coefficients for synthesis filtering. In addition, the C-code of a synthesis filtering module of the MPEG-1/2 Layer-II decoder is rewritten by using the linear assembly programming technique. This is because the synthesis filtering module requires the most processing time among all processing modules of the decoder. In order to show how the real-time implementation works, we obtain the percentage of the processing time for decoding and calculate a RMS value between the decoded audio signals by the reference MPEG decoder and its DSP version implemented in this paper. As a result, it is shown that the percentages of the processing time for the MPEG-1/2 Layer-II and MPEG-4 ER-BSAC decoders occupy less than 3% and 11% of the DSP clock cycles, respectively, and the RMS values of the MPEG-1/2 Layer-II and MPEG-4 ER-BSAC decoders implemented in this paper all satisfy the criterion of -77.01 dB which is defined by the MPEG standards.

Estimation of Design Wind Speed Compatible for Long-span Bridge in Western and Southern Sea (서남해안 장대교량에 적합한 설계 풍속 산정)

  • Kim, Han Soo;Lee, Hyun Ho;Cho, Doo Young;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • Recently there are many long span cable supported bridges like Cable Stayed Bridge and Suspension Bridge already constructed or planned. Reconsidering of proper design wind load of long span bridge is required since the meteorological value based on the data only from 1960s to 1995 has been used when we estimate the wind load for designing long span bridges. In this paper, the research area was confined to western and southern coasts where many long span bridges have constructed. The method of moment and the least-squares method were used to estimate the expected wind speeds of 100 year's return period for girder bridges and for 200 year's return period for long span bridges based on the Gumbel's distribution. As the return-period wind speed on the land face was revised because of recent high speed velocity, the revised return-period wind speed is increased by 17%. Compatibility of return-period wind speed was also evaluated using RMS (Root Mean Square) error method. Aa a result of this paper, the least-squares method is more compatible than the method of moment in the case of western and southern coasts in Korea.

Development of the Aircraft CO2 Measurement Data Assimilation System to Improve the Estimation of Surface CO2 Fluxes Using an Inverse Modeling System (인버스 모델링을 이용한 지표면 이산화탄소 플럭스 추정 향상을 위한 항공기 관측 이산화탄소 자료동화 체계 개발)

  • Kim, Hyunjung;Kim, Hyun Mee;Cho, Minkwang;Park, Jun;Kim, Dae-Hui
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • In order to monitor greenhouse gases including $CO_2$, various types of surface-, aircraft-, and satellite-based measurement projects have been conducted. These data help understand the variations of greenhouse gases and are used in atmospheric inverse modeling systems to simulate surface fluxes for greenhouse gases. CarbonTracker is a system for estimating surface $CO_2$ flux, using an atmospheric inverse modeling method, based on only surface observation data. Because of the insufficient surface observation data available for accurate estimation of the surface $CO_2$ flux, additional observations would be required. In this study, a system that assimilates aircraft $CO_2$ measurement data in CarbonTracker (CT2013B) is developed, and the estimated results from this data assimilation system are evaluated. The aircraft $CO_2$ measurement data used are obtained from the Comprehensive Observation Network for Trace gases by the Airliner (CONTRAIL) project. The developed system includes the preprocessor of the raw observation data, the observation operator, and the ensemble Kalman filter (EnKF) data assimilation process. After preprocessing the raw data, the modeled value corresponding spatially and temporally to each observation is calculated using the observation operator. These modeled values and observations are then averaged in space and time, and used in the EnKF data assimilation process. The modeled values are much closer to the observations and show smaller biases and root-mean-square errors, after the assimilation of the aircraft $CO_2$ measurement data. This system could also be used to assimilate other aircraft $CO_2$ measurement data in CarbonTracker.

Description of Kinetic Behavior of Pathogenic Escherichia coli in Cooked Pig Trotters under Dynamic Storage Conditions Using Mathematical Equations

  • Ha, Jimyeong;Lee, Jeeyeon;Oh, Hyemin;Kim, Hyun Jung;Choi, Yukyung;Lee, Yewon;Kim, Yujin;Lee, Heeyoung;Kim, Sejeong;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.938-945
    • /
    • 2020
  • A dynamic model was developed to predict the Escherichia coli cell counts in pig trotters at changing temperatures. Five-strain mixture of pathogenic E. coli at 4 Log CFU/g were inoculated to cooked pig trotter samples. The samples were stored at 10℃, 20℃, and 25℃. The cell count data was analyzed with the Baranyi model to compute the maximum specific growth rate (μmax) (Log CFU/g/h) and lag phase duration (LPD) (h). The kinetic parameters were analyzed using a polynomial equation, and a dynamic model was developed using the kinetic models. The model performance was evaluated using the accuracy factor (Af), bias factor (Bf), and root mean square error (RMSE). E. coli cell counts increased (p<0.05) in pig trotter samples at all storage temperatures (10℃-25℃). LPD decreased (p<0.05) and μmax increased (p<0.05) as storage temperature increased. In addition, the value of h0 was similar at 10℃ and 20℃, implying that the physiological state was similar between 10℃ and 20℃. The secondary models used were appropriate to evaluate the effect of storage temperature on LPD and μmax. The developed kinetic models showed good performance with RMSE of 0.618, Bf of 1.02, and Af of 1.08. Also, performance of the dynamic model was appropriate. Thus, the developed dynamic model in this study can be applied to describe the kinetic behavior of E. coli in cooked pig trotters during storage.

V700 Cygni: A Dynamically Active W UMa-type Binary Star II

  • Kim, Chun-Hwey;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.

Predictive Model for Growth of Staphylococcus aureus in Suyuk (수육에서의 Staphylococcus aureus 성장 예측모델)

  • Park, Hyoung-Su;Bahk, Gyung-Jin;Park, Ki-Hwan;Pak, Ji-Yeon;Ryu, Kyung
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.487-494
    • /
    • 2010
  • Cooked pork can be easily contaminated with Staphylococcus aureus during carriage and serving after cooking. This study was performed to develop growth prediction models of S. aureus to assure the safety of cooked pork. The Baranyi and Gompertz primary predictive models were compared. These growth models for S. aureus in cooked pork were developed at storage temperatures of 5, 15, and $25^{\circ}C$. The specific growth rate (SGR) and lag time (LT) values were calculated. The Baranyi model, which displayed a $R^2$ of 0.98 and root mean square error (RMSE) of 0.27, was more compatible than the Gompertz model, which displayed 0.84 in both $R^2$ and RMSE. The Baranyi model was used to develop a response surface secondary model to indicate changes of LT and SGR values according to storage temperature. The compatibility of the developed model was confirmed by calculating $R^2$, $B_f$, $A_f$, and RMSE values as statistic parameters. At 5, 15 and $25^{\circ}C$, $R^2$ was 0.88, 0.99 and 0.99; RMSE was 0.11, 0.24 and 0.10; $B_f$ was 1.12, 1.02 and 1.03; and $A_f$ was 1.17, 1.03 and 1.03, respectively. The developed predictive growth model is suitable to predict the growth of S. aureus in cooked pork, and so has potential in the microbial risk assessment as an input value or model.

The Analysis Errors of Surface Water Temperature Using Landsat TM (Landsat TM을 이용한 표층수온 분석 오차)

  • 정종철;유신재
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • The estimation technique of surface water temperature by satellite remote sensing has been applied to ocean and large lakes using AVHRR. However, the spatial resolution AVHBR is not abquate for coastal region and small lakes. Landsat 5 TM has 120 m spatial resolution, which suits better. We carried out analysis of surface water temperature in Lake Sihwa and near coastal area using Landsat 5 TM. To relate digital number to the brightness temperature, we applied Empirical, NASA, RESTEC, Quadratic methods. Comparing calculated and observed value, we obtained as follows; NASA method, $R^2=0.9343$, RMSE(Root Mean Square Error)=3.5876$^{\circ}C$; RESTEC method, $R^2=0.8937$, RMSE=3.76$^{\circ}C$; Quadratic method, $R^2=0.8967$, RMSE=2.949$^{\circ}C$. Because Landsat TM has only one band for extracting surface temperature, it was difficult to correct for the atmospheric errors. For improving the accuracy of surface temperature detection using Landsat TM, there is a need for a method to decrease the effect of atmospheric contents.

A Study on Design Optimization of an Axle Spring for Multi-axis Stiffness (다중 축 강성을 위한 축상 스프링 최적설계 연구)

  • Hwang, In-Kyeong;Hur, Hyun-Moo;Kim, Myeong-Jun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2017
  • The primary suspension system of a railway vehicle restrains the wheelset and the bogie, which greatly affects the dynamic characteristics of the vehicle depending on the stiffness in each direction. In order to improve the dynamic characteristics, different stiffness in each direction is required. However, designing different stiffness in each direction is difficult in the case of a general suspension device. To address this, in this paper, an optimization technique is applied to design different stiffness in each direction by using a conical rubber spring. The optimization is performed by using target and analysis RMS values. Lastly, the final model is proposed by complementing the shape of the weak part of the model. An actual model is developed and the reliability of the optimization model is proved on the basis of a deviation average of about 7.7% compared to the target stiffness through a static load test. In addition, the stiffness value is applied to a multibody dynamics model to analyze the stability and curve performance. The critical speed of the improved model was 190km/h, which was faster than the maximum speed of 110km/h. In addition, the steering performance is improved by 34% compared with the conventional model.