• Title/Summary/Keyword: Root growth inhibition

Search Result 288, Processing Time 0.028 seconds

Growth and Chlorophyll Biosynthesis of Vigna angularis under Lead Stress

  • Suh-Young Koo;Sun
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.145-155
    • /
    • 1992
  • The effect of various supplies of lead singly and in combination with aluminium on growth and chlorophyll biosynthesis was investigated in 7-day-old Vigna anguluris seedlings. Expose to 50 $\mu$N Pb or more drastically reduced root elongation rate. Significant depressions in root growth was observed within 1 day and no recovery of growth was seen over the duration of treatment period. Root elongation decreased depending on the Pb concentrations. Root growth inhibition was stronger than shoot growth inhibition. The initiation of lateral roots appeared to be more sensitive to Pb than the growth of main roots. Inhibition of root and shoot elongation by Pb was lessened by combined exposure of Pb and Al, suggesting that the presence of AA reverse the inhibitory effect of Pb alone. With the histochemical sodium rhodizonate method the rate of Pb uptake was dependent on the Pb concentration and exposure time of the roots to Pb salts. Pb was first deposited on the root surface and then translocated radially in the root cap cells. During a longer Pb administration (up to 72 h) Pb penetration was nonuniform, with accumulation within the cortex or endodermis. There was drastic reduction in chlorophyll content by Pb. The Pb inhibition of chlorophyll synthesis was concentration dependent. 5-Aminolevulinic acid dehydratase (ALAD) activity exhibited distinct inhibition from control. Reduction in chlorophyll content was accompanied by proportional changes in ALAD activity. Chlorophyll content and ALAD activity were less affected by combined exposure of Pb and Al, suggesting that Al has a protective effect against the inhibiting action of Pb on photosynthetic activity.

  • PDF

Growth and Chlorophyiil Biosynthesis of Vigna angularis under Lead Stress

  • Koo Suh-Young;Jin Sun-Young;Hong Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.145-155
    • /
    • 1997
  • The effect of various supplies of lead singly and in combination with aluminium on growth and chlorophyll biosynthesis was investigated in 7-day-old Vigna angularis seedlings. Expose to 50 uM Pb or more drastically reduced root elongation rate. Significant depressions in root growth was observed within 1 day and no recovery of growth was seen over the duration of treatment period. Root elongation decreased depending on the Pb concentrations. Root growth inhibition was stronger than shoot growth inhibition. The initiation of lateral roots appeared to be more sensitive to Pb than the growth of main roots. Inhibition of root and shoot elongation by Pb was lessened by combined exposure of Pb and Al, suggesting that the presence of Al reverse the inhibitory effect of Pb alone. With the histochemical sodium rhodizonate method the rate of Pb uptake was dependent on the Pb concentration and exposure time of the roots to Pb salts. Pb was first deposited on the root surface and then translocated radially in the root cap cells. During a longer Pb administration (up to 72 h) Pb penetration was nonuniform, with accumulation within the cortex or endodermis. There was drastic reduction in chlorophyll content by Pb. The Pb inhibition of chlorophyll synthesis was concentration dependent. $\delta-Aminolevulinic$ acid dehydratase (ALAD) activity exhibited distinct inhibition from control. Reduction in chlorophyll content was accompanied by proportional changes in ALAD activity. Chlorophyll content and ALAD activity were less affected by combined exposure of Pb and Al, suggesting that Al has a protective effect against the inhibiting action of Pb on photosynthetic activity.

  • PDF

Adventitious root growth inhibition in boron-deficient or aluminum-stressed sunflower seedlings

  • Kim, Tae-Yun;Go, Eun-Jung;Jung, Sang-Deck;Kim, Hyo-Jin;Hong, Jung-Hee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.261-262
    • /
    • 2003
  • Sunflower(Helianthus annuus L.) seedings were de-rooted and grown in nutrient solutions providing either deficient or sufficient boron supply and supplemented with aluminum. Increasing concentrations of aluminum in the nutrient medium caused progressive inhibition of root growth and a parallel increase in proline level of roots. Elevated boron levels improved root growth under toxic aluminum conditions and produced higher proline contents. Exogenous ascorbate improved adventitions root growth in plants supplied with insufficient boron and aluminum. These findings suggest that root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

  • PDF

Inhibition of Adventitious Root Growth in Boron-Deficient or Aluminum-Stressed Sunflower Cuttings

  • Hong, Jung-Hee;Go, Eun-Jung;Kim, Tae-Yun
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1189-1196
    • /
    • 2003
  • The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 ${\mu}$M) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.

Benzaldehyde as a new class plant growth regulator on Brassica campestris

  • Choi, Geun-Hyoung;Ro, Jin-Ho;Park, Byoung-Jun;Lee, Deuk-Yeong;Cheong, Mi-Sun;Lee, Dong-Yeol;Seo, Woo-Duck;Kim, Jin Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2016
  • Plant growth regulator is an essential pesticide to date while the available active ingredient is not well understood unlike fungicide, insecticide and herbicide. This study was aimed to evaluate a new chemical class of plant growth regulator, and the total of 92 benzene derivatives were screened for their germination and early stage of the root growth regulation on Brassica campestris. Thirty benzaldehydes, nine acids, one amide, and one ester showed potent root growth inhibitory activity (>70 % inhibition) while only salicylaldehyde showed potent germination inhibition ($IC_{50}=81.2mg/L$) suggesting that benzaldehyde was a key module candidate for the growth inhibition. Benzaldehydes were further evaluated for root growth inhibition. 2,3-Dihydroxybenzaldehyde and salicylaldehyde showed $IC_{50}$ values of 8.0 and 83.9 mg/L, respectively. On the other hand, salicylaldehyde, and 2,4,5-trihydroxybenzaldehyde were found to have root growth promotion effects less than 10 mg/L. This result suggests that the benzaldehyde is a new class candidate for plant growth regulator.

Effect of Seed Leachates of 'Vernal' Alfalfa on Inhibition of Alfalfa Germination and Root Growth

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.134-138
    • /
    • 2000
  • Most parts of alfalfa plant have been reported to contain autotoxic substances that inhibit seed germination and early seedling growth, however, the chemical(s) is not still studied much. Effect of seed leachates of 'Vernal' alfalfa (Medicago sativa L.) was evaluated for inhibition of alfalfa germination and root growth through bioassay. Alfalfa seeds were extracted in 1 L deionized water for 1 h after soaking and the leachates caused to reduce root length of alfalfa significantly as the soaking time increased. Crude seeds at 4 g L$L^{-1}$ exudated autotoxins that reduce significantly root length by 34 % compared to the control, when the seeds soaked in deionized water for 24 h. However, the extracts did not affect final germination as well as speed of germination. Extracts from ground seeds significantly reduced speed of germination (GT 50) and root length. The results indicate that release of autotoxic substances from seeds during seed imbibition was increased with increase of soaking time and seed amount, and that autotoxicity was more occurred in ground seeds than in crude seeds.

  • PDF

Allelopathic Effects of Medicinal Plants on Echinoclhoa crus-galli Beauv. (약용작물의 Allelopathy 효과에 관한 연구)

  • Kim, Sang-Yeol;Kim, Chil-Ryong;Park, Sung-Tae;Kim, Soon-Chul
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.407-412
    • /
    • 1997
  • Allelopathic activity of methanol extract from medicinal plants was determined based on the inhibition of germination, shoot and root length of Echinochloa crus-galli. The response was depended on the source of extracts and concentrations. Of the 20 test plants tested, Cnidium officinale showed most inhibition according to germination, shoot and root length of E. crus-galli. Based on the plant parts, the root extract of C. officinale had more inhibitory effect on E. crus-galli than the stem+leaf extract. Phytotoxic effects of the root extract on E. crus-galli showed 75% inhibition of seed germination, 95% inhibition of shoot growth, and 100% inhibition of root growth at the concentration of 1g/petridish. Sequential partitioning of root extract with organic solvents with increasing polarity showed that the ethylacetate fraction had the greatest inhibitory effect on E. crus-galli. Germination was not inhibited at any rate of ethylacetate fraction but shoot and root growth, were significantly inhibited even at 2mg/petridish. This indicates that the most toxic phytotoxin present in the root extract may be moderate polar compound.

  • PDF

Quantifying Inhibitory Effects of Reclaimed Soils on the Shoot and Root Growth of Legume plant Lentil(Lens culinaris) (정화 처리토가 렌틸(콩과식물)의 지상부 및 뿌리 성장에 주는 영향에 대한 정량평가)

  • Park, Hyesun;Kang, Sua;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • A series of pot experiments were conducted to quantitatively estimate inhibitory effects of reclaimed soil on the growth of Lentil (Lens culinaris) with two soils remediated by land farming (DDC) and low temperature thermal desorption(YJ), respectively. After cultivation in a growth chamber for 8 days, plants were harvested for the analysis of 8 indices including chlorophyll-a and carotenoid in leaves, shoot fresh weight, root dry weight, root length, number of later roots, specific root length (SRL) as well as germination rate in comparison to control experiment conducted on nursery soil. Root length was estimated by SmartRoot program from the digital images of the roots. The results showed germination rate on YJ and DDC soil decreased 29 and 71%, respectively. In comparison to the control, the averaged value of the 8 indices for YJ and DDC soil showed overall growth inhibition was 48 and 68%, respectively. When the same experiment was conducted with 25% (W/W) vermiculate amended soil, plant growth on each soil was comparable to that of the control. The results implies reclaimed soils requires additional processes and/or amendments to reuse for plant growth.

Effect of Cinnamly Derivatives on Crop Growth Inhibition of Brassica campestris. (신나밀계 화합물이 배추의 종자발아와 유묘생장에 미치는 영향)

  • Kim, Jin Hyo;Choi, Geun-Hyoung;Park, Byung-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.439-442
    • /
    • 2014
  • Cinnamyl derivatives are abundant secondary metabolite in biomass, and they have been studied on their biological activities. However, little information was available for plant growth regulation of the cinnamyl derivatives. In here, the acid, amide, alcohol, aldehyde and ester of cinnamyl derivatives were screened for their root growth inhibition properties including germination. The aldehyde, amide and ester derivatives showed better the root growth inhibition than the carboxylic acid, and the meta-positioned electron withdrawing group on cinnamyl derivatives enhanced the inhibition activity. 3-Chlorocinnamic acid, cinnamaimde and 4-methoxycinnamaldehyde were highlighted with the early stage root development inhibition ($GR_{50}$ < 100 mg/L) on Brassica campestris.

Overexpression of three related root-cap outermost-cell-specific C2H2-type zinc-finger protein genes suppresses the growth of Arabidopsis in an EAR-motif-dependent manner

  • Song, Sang-Kee;Jang, Hyeon-Ung;Kim, Yo Han;Lee, Bang Heon;Lee, Myeong Min
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.160-165
    • /
    • 2020
  • The root meristem of Arabidopsis thaliana is protected by the root cap, the size of which is tightly regulated by the balance between the formative cell divisions and the dispersal of the outermost cells. We isolated an enhancer-tagged dominant mutant displaying the short and twisted root by the overexpression of ZINC-FINGER OF ARABIDOPSIS THALIANA1 (ZAT1) encoding an EAR motif-containing zinc-finger protein. The growth inhibition by ZAT1 was shared by ZAT4 and ZAT9, the ZAT1 homologues. The ZAT1 promoter was specifically active in the outermost cells of the root cap, in which ZAT1-GFP was localized when expressed by the ZAT1 promoter. The outermost cell-specific expression pattern of ZAT1 was not altered in the sombrero (smb) or smb bearskin1 (brn1) brn2 accumulating additional root-cap layers. In contrast, ZAT4-GFP and ZAT9-GFP fusion proteins were distributed to the inner root-cap cells in addition to the outermost cells where ZAT4 and ZAT9 promoters were active. Overexpression of ZAT1 induced the ectopic expression of PUTATIVE ASPARTIC PROTEASE3 involved in the programmed cell death. The EAR motif was essential for the growth inhibition by ZAT1. These results suggest that the three related ZATs might regulate the maturation of the outermost cells of the root cap.