• Title/Summary/Keyword: Root gap

Search Result 159, Processing Time 0.025 seconds

The Effects of Root Gap on Mechanical Properties and Fatigue Strength of Weldment (용접부의 기계적 성질 및 피로강도에 미치는 루트 간격의 영향)

  • 이원근;장경복;강성수
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.98-103
    • /
    • 2001
  • Root gap out of standard by welding deformation is frequently produced at butt weld joints of steel bridge. For example although standard root gap is below 6mm at butt weld joints of plates under 15mm thickness. maximum 35mm root opening is produced at the weld field. At this case, the part out of standard is generally built up and the rest part is welded by WPS. Direct welding without built-up welding is preferred in weld field because built-up welding process bring about the cost-up at manufacturing. To apply this direct weld to root gap out of standard, the investigation about mechanical properties and fatigue at weldment is required. Inthisstudy, therefore the verification for direct weld without built up is performed at weldment as root gap. It includes tension, bending. hardness, impact and fatigue test for each welding specimen of 6mm, 25mm, 35mm root gap.

  • PDF

Method to Overcome Gap Variation by Control of Arc Force in Root Pass Welding for Back Bead by GMAW (GMAW 루트패스 이면비드 용접에서 아크력제어에 의한 갭변동 극복 방법)

  • Son, Chang-Hee;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.77-81
    • /
    • 2011
  • In most industry, manual GTAW welding is preferred for formation of stable back bead in root weld of butt joint. However, manual GTAW welding has low productivity as compared with GMAW, also it has unstable bead quality which depend on skilled workers. So it is necessary to develop process of root pass welding by using automation GMAW that have stable back bead formation and high productivity. In this paper, the design of U-groove with 3mm root face was applied to extend the tolerance of misalignment in condition of standard root gap 1.5mm. Consequently, for the formation of stable back bead in root pass of butt welding, in case of the narrow root gap(0.5mm) the large arc force was applied by increasing the current and voltage. In case of the large root gap(2.5mm), the small arc force was applied by decreasing the current and voltage. Considering the various root gap, the required deposited metal was controlled by welding speed only.

Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge (교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

A Study on the Effects of Root Gap on Mechanical Properties and Microstructure of Weldment (루트간격이 용접부의 기계적 성질과 미세조직에 미치는 영향에 관한 연구)

  • Lee, Won-Kun;Jang, Gyoung-Boc;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.187-193
    • /
    • 1999
  • Dimensional difference by welding deformation is usually occurred at steel bridge manufacturting or multi-pass welding used at joining of thick plates. Be this, root gap out of standard is frequently developed at butt weld joints. For example, although standard root gap below 6mm at butt weld joints of plates under 15mm thickness, maximum 30mm root opening is developed at the weld field. At this case, 24mm parts out of standard is generally built up. But, there are no accumulated data and restriction about this built up welding pars. In this study, therefore, the accumulation of data for built up parts and the verification of the mechanical properties of weld part as root gap is performed. It is included that tensile, bending, impact, hardness test and microstructural review for each welding specimen of 0mm, 6mm, 30mm root opening.

  • PDF

A Study on the Back Bead control by Using Short Circuit Frequency in GMA Welding of Sheet Metal (박판 GMA 용접에서 단락 주파수를 이용한 이면비드의 제어에 관한 연구)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1995
  • In GMA welding of sheet metal, the short circuit metal transfer mdoe is preferred because of its low heat input and capability of bridging the root gap. The molten electrode is transferred to the workpiece during repectitive short circuit in the model. The waveform of welding current or voltage and the frequency of short circuiting are affected by a number of factors including: magnitude of welding current and voltage, root gap, electrode extension, power supply characteristics, and so on. In this study experimental models were proposed, which are able to determine the relationship between the root gap and short circuit frequency and the relationship between the root gap and appropriate welding speed that produces the good quality of back bead without burn through. Using the experimental models, the root gap can be obtained from measuring the short circuit frequency, and then the appropriate weldig speed to the root gap can be determined. Thus a back bead control system was constructed by controlling the welding speed for maintaining the quality of back bead. The developed system has shown the successful capability of back bead control.

  • PDF

Effect of root gaps on toughness of FCAW weld metal (FCAW 용접부의 인성에 미치는 Root Gap의 영향)

  • 한종만;이은배;안성철;한용섭
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.40-49
    • /
    • 1991
  • Both impact and fracture toughnesses were investigated with root gaps in FCAW weld metals at room temperature and 0.deg.C. The maximum impact value was obtained at the root gap of 16mm for 1G position weld metal, and the impact value of 3G position weld metals also showed the maximum impact value at the root gap of 12mm. However, the fracture toughnes(CTOD)values tend to decrease with increasing root gaps at both temperatures in 1G weld metal. Bending test also showed satisfactory results with all of root gaps investigated. Based on this result, it becomes possible to apply wide root gaps in real projects in both aspects of toughness and bending resistance.

  • PDF

Fatigue Assessment of High Strength Steel with Butt Welded Joints for the Root Gap Difference (고강도강 맞대기 용접 시험편의 루트갭 변경에 따른 피로강도 평가)

  • Kim, Ho-Jung;Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • In this study, a series of fatigue tests was conducted to evaluate fatigue strength for the root gap difference with high strength steel with butt welded joints. A finite element analysis using effective notch stress method was also performed to compare effective notch factors each other with butt welded specimens made by copper backing. The results of fatigue tests were classified according to the root gap difference. Fatigue life of butt welded specimens is presented for determining the root gap of high strength steel with butt welded joints in terms of fatigue strength. Then effective notch stress was applied to interpret fatigue strength of butt welded specimen model which is reflected actual measured dimensions. As a result, fatigue strength of high strength steel with butt welded specimens is increased by root gap gets longer in length.

A Study on Detecting and Monitoring of Weld Root Gap using Neural Networks (신경회로망을 이용한 용접 Root Gap 검출과 모니터링에 관한연구)

  • Kang Sung-In;Kim Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1326-1331
    • /
    • 2006
  • Weld root gap is a important fact of a falling-off weld quality in various kind of weld defect. The welding quality can be controlled by monitoring important parameters, such as, the Arc voltage, welding current and welding speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using neural networks for detecting and monitoring of weld root gap and bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and detect the welding defects.

Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate (열간 곡면성형된 Al5083 후판의 TIG 용접 시 루트갭 최소화를 위한 최적 블랭크 형상 결정)

  • Lee, Jeong Min;Ko, Dae Hoon;Lee, Kyung Hun;Lee, Chan Joo;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.815-823
    • /
    • 2013
  • The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.

Development of a Intelligent Welding Carriage for Automation of Curved Block

  • Choi, H.B.;Moon, J.H.;Jun, W.R.;Kim, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.626-630
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, $1{\sim}7$ [mm] and inclination, $0{\sim}30$ [deg]. Since available conventional carriage type is limited to use below root gap of 3 [mm], only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage, current and travel speed, with respect to root gap and inclination to achieve good welding quality. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verify the trajectory tracking accuracy of end-effector.

  • PDF