• Title/Summary/Keyword: Room-temperature distribution

Search Result 420, Processing Time 0.031 seconds

Establishment of Effective Freshness Indicators for Seafood During Room-Temperature Distribution Using Commercial Cold Packs and Styrofoam Boxes (시판 보냉팩 및 스티로폼 박스 상온 유통시 효율적인 수산물 선도지표 설정)

  • Lee, Ji Un;Heu, Min Soo;Lee, Jung-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.670-680
    • /
    • 2022
  • Owing to the lack of a cold-chain distribution system, most seafood is generally distributed under room temperature conditions. However the degradation of freshness during the distribution process can lead to disputes between sellers and consumers. The most widely used method for low-temperature distribution for seafood includes packaging it with styrofoam boxes and cold packs. In this study, vacuum-packed frozen fillets of four fish species of [white meat (Paralichthys olivaceus and Sebastes schlegelii) and red meat (Scomber japonicus and Scomberomorus niphonius)] were placed in styrofoam boxes with cold packs. Thereafter, changes in chemical (including pH, volatile basic nitrogen, and trimethylamine), physical (odor intensity, hardness, and chewiness), and microbial (viable cell count) characteristics of the fillets were measured during storage at 25℃. To identify the suitable method of determining freshness during the room-temperature distribution, several factors were considered, which included significant difference verification, correlation coefficients, and economic efficiency (experimental cost and time). Volatile basic nitrogen, pH, odor intensity, and viable cell count are the most rapid and accurate freshness indicators for determining freshness of frozen fish fillets during.

A Study on Thermal and Fluid Characteristics inside Engine Room of Auxiliary Power Unit for Tracked Vehicle (궤도차량용 보조동력장치 엔진룸 내부 열유동 특성에 관한 연구)

  • Lee, Tae-Eui;Suh, Jeong-Se;Jeong, Sang-Hwan;Park, Young-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.85-93
    • /
    • 2009
  • This research is intended to grasp the characteristics of heat flow inside auxiliary power device engine room to obtain the design basic data through numerical analysis and experiment. For experiment cost reduction, numerical analysis was done to obtain quantitative data by observing the change in temperature distribution of major parts according to changes in normal condition, incompressible condition, engine surface heat emission rate and absorption temperature with the use of commercial STAR-CD. The experiment was done by grasping the temperature distribution of major interested parts inside engine room in loaded and unloaded conditions during engine operation. The temperature distribution data here will serve as useful design data during APU engine room designing.

3-D Simulation of Air Flow in Cold Storage Room for Uniform Temperature Distribution (저온저장고 내부의 균일한 온도분포를 위한 3차원 공기유동 분석)

  • 성제중;고학균;조성인;양길모
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.279-286
    • /
    • 2000
  • Most of the domestic cold storage rooms are inefficient for agricultural products because of temperature gradients inside the storage rooms. Temperature gradients are developed mainly by improper airflow pattern inside the storage room, which is a main cause of the spoilage of the agricultural products. There proper airflow pattern is essential to minimize these temperature gradients and the spoilage. The performance and characteristics of a cold storage room were determined as a function of airflow pattern and temperature distribution in forced circulation cold storage room. A commercial CFD(computational fluid dynamics) code was used to simulate 3-D airflow in the cold storage room. Solving the flow equations for the storage room, a standard k-$\varepsilon$ turbulent model was implemented to calculate steady state turbulent velocity distribution. The CFD prediction results were compared with temperature measurements inside the cold storage room. In case of pallet storage, Temperature gradients inside pallet storage was reduced because the contact area of cold air expanded through an alley of airflow in storage. But is case of bulk storage, the last temperature of storage considerably rose more than the initial temperature of storage. The reason was that bulk storage didn't include any alley of airflow in storage.

  • PDF

Thermal Environment Analysis of a Room in Accordance with Ventilation Condition with Multi-Heat Sources (다수의 열원을 가지는 공간에서의 환기 조건에 따른 열환경 해석)

  • Kim, Jae-Jung;Son, Young-Gap;Chang, Seog-Weon;Ryu, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.199-204
    • /
    • 2000
  • This paper reports a thermal environmental analysis of a room in accommodated with multi-heat sources according to ventilation condition. Two case modification have been investigated to obtain the lower temperature distribution in the room. The temperature distribution of the original room were found about $25{\sim}35^{\circ}C$. As a result, the use of, three ventilating fans and two electric fans are useful for room ventilation respectively, and using two electric fan is more recommendable in side of economical efficiency.

  • PDF

Analysis of Temperature and Humidity Distribution in a Dry Room (Dry Room내의 온.습도 분포 해석)

  • 이관수;임광옥;안강호;정영식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.524-531
    • /
    • 2001
  • The temperature and humidity distribution in a dry room are studied numerically by using standard$\kappa-\varepsilon$ turbulence model. In order to evaluate effective heat and moisture ventilation characteristics inside the room, the heat removal capacity and moisture exhaust efficiency are introduced. An effective ventilation control is analyzed by evaluating quantitatively temperature and humidity distributions. It was found that the mean absolute humidity inside the room was almost constant with approximately 0.1905g/kg air regardless of the models and the heat generation rates. This was believed that the moisture generation by workers was relatively small. 40% improvement of the critical decay time was achieved, through the modifications of design variables.

  • PDF

Prediction of Air Movement and Temperature Distribution at Different Store Methods Using 3-D CFD Simulation in Forced-Air Cooling Facility

  • Yang, G.M.;Koh, H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 2002
  • Temperature is the most influential environment parameter which affects the quality change of agricultural products in cold storage. Therefore, it is essential to keep the uniform temperature distribution in the storage room. This study was performed to analyze the air movement and temperature distribution in the forced recirculating cold storage facility and to simulate optimum storage method of green groceries using 3-D CFD(three dimensional computational fluid dynamics) computer simulation which applied the standard $textsc{k}$-$\varepsilon$ turbulence model and FVM(finite volume method). The simulation was validated by the experimental results for onion storage and the simulation model was used to simulate the temperature and velocity distribution in the storage room with reference to the change of storage method such as location of storage, no stores, bulk storage, and pallet storage. In case of no stores, internal airflow was circulated without stagnation and consequently air movement and temperature distribution were uniform. In case of bulk storage, air movement was stagnated so much and temperature distribution of onion was not uniform. Furthermore, the inner temperature of onion roses more than the initial temperature of storage. In case of pallet storage, air movement and temperature distribution of onion were so uniform that the danger of quality change was decreased.

  • PDF

Numerical Analysis of Natural Convection inside Spray Coating Room on Temperature Distributions (자연대류를 고려한 스프레이 코팅 룸에서의 온도분포 해석)

  • Kim, Nam Woong;Kim, Bo-Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.425-430
    • /
    • 2019
  • Zinc coatings are widely used because of their environmental friendliness and high performance. In general, the coating temperature is a major factor in determining the coating layer thickness and coating quality. In the case of a zinc coating, a uniform and appropriate coating temperature is required. In this study, a thermal flow simulation of the air flow was performed to analyze the temperature distribution of a zinc spray coating room in a natural convection state. Using SolidWorks, modeling was performed for two spray coating rooms, a preheating room, and a drying room, and a thermal flow coupled analysis was performed using ANSYS-FLUENT. As a result of the analysis, the temperature distribution characteristics in the spray coating rooms were determined. It was found that the present temperature was below the target temperature of $25^{\circ}C$. Simulations were conducted for two different boundary conditions (one with a heater added and another with the open part closed). The simulation results show that the method of closing the open part is better than adding the heater.

Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model (복합재료 연료전지 스택의 열응력 해석)

  • Jeon Ji Hoon;Hwang Woonbong;Um Sukkee;Kim Soowhan;Lim Tae Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF

Improvement of Safety Rules for Accident Prevention of Logistics Center Accidents: Focusing on Room Temperature and Low Temperature Warehouses (물류창고 사고 예방을 위한 안전수칙 개선 방향: 상온창고와 저온창고를 중심으로)

  • Byung Hyun Chung;Ki Hong Kim;Sang Chul Park
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.91-97
    • /
    • 2024
  • When a fire breaks out in a distribution center, it causes a lot of damage. And the most casualties are caused by Fire accidents. Therefore, training for fire prevention should be mandatory at the distribution center. Also, the contents of education should be different in room temperature warehouses and low temperature warehouses. Fire education in low-temperature warehouses should be more emphasized. This is because many fires occur in low-temperature warehouses. In this study, a study was conducted to determine the important order of training hours and contents for fire prevention education according to the type of distribution center. The importance of time and content for safety education in all types of warehouses did not differ significantly. It was first decided that safety prevention training should be conducted periodically in all types of warehouses