• Title/Summary/Keyword: Rooftop urban agriculture

Search Result 17, Processing Time 0.024 seconds

A Study on Revitalization of Rooftop Garden by Assessing the Publicness : a Case of Mullae Roof Garden, Mullae-dong, Seoul (옥상텃밭의 공공성 평가에 따른 이용 활성화 방안 연구)

  • Kwang, Nae-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.3
    • /
    • pp.131-142
    • /
    • 2016
  • Urban agriculture, which can be defined as agriculture performed in a city, is suggested as an alternative solution to restore deserted community and expand green land in city area through cultivation activities. In Korea, 'Urban Agriculture Promotion and Support Act' was enforced from May 2012. In addition, in the same year, Seoul Metropolitan Government declared 'the beginning of urban agriculture era,' established municipal ordinance, and increased budget to actively support urban agriculture. As a result, urban agriculture practices have been increasing every year. Yet, the way of developing urban agriculture in a uniform way of expanding green land has led to difficulties of securing proper spaces. Accordingly, 'roof top' spaces have gained attention. This study analyzes rooftop garden, one of the spaces of carrying out urban agriculture, from the publicness perspective. The study selected a case study of a public rooftop garden in Mullae-dong, Yeongdeungpo-gu, investigated present conditions and usage features of the garden, and explored the conditions to be a 'public' roof top garden. Through theoretical analysis, both physical and non-physical indicators were derived for analysis framework; physical aspects- accessibility, locality, openness, comfortness, and non-physical aspects- subjectivity, cooperativeness, and a sense of community. The results of this study are as follows. First, openness and locality scores were the highest, and comfortness scored the lowest, in ensuring the publicness of Mullae roof top garden. Second, non-physical indicators had stronger effect than physical indicators on rooftop garden users' awareness on publicness and building a garden community. In conclusion, in order to vitalize roof top garden, users should be engaged from the very first planning stage of building a garden, opening hours should not be limited, and more importance should be put on users to subjectively manage the operation of rooftop garden than merely creating a physical environment.

Necessity of the Rooftop farm and Agricultural Use Instance in Japan (뉴스초점 - 옥상농원의 필요성과 일본에서 농업이용사례)

  • Rhee, Sung-Kap
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.3
    • /
    • pp.36-39
    • /
    • 2012
  • Roof gardens/Rooftop farm are most often found in urban environments. Plants have the ability to reduce the overall heat absorption of the building which then reduces energy consumption. Plant surfaces however, as a result of transpiration do not rise more than $4-5^{\circ}C$ above the ambient and are sometimes cooler. As Urban agriculture in an accessible rooftop farm, space becomes available for localized small-scale urban agriculture, a source of local food production. An urban garden can supplement the diets of the community it feeds with fresh produce and provide a tangible tie to food production.

  • PDF

Effect of Companion Planting with Aromatic Plants on the Growth and Pest Control of Lettuce(Lactuca sativa) in Rooftop Urban Agriculture (옥상 도시농업에서 방향식물과의 공영식재에 따른 상추의 생육 및 해충방제 효과)

  • Han Gil Kim;Sun Yeong Lee;Yong Han Yoon;Jin Hee Ju
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • The objective of this study were to assess rooftop urban agriculture and analyze the differences in soil, growth, physiology, and productivity to elucidate the effect of companion planting with various plants, including lettuce (Lactuca sativa), rosemary (Salvia rosmarinus), marigold (Tagetes patula), Korean perilla (Perilla frutescens), and garlic chives (Allium senescens). Measurements were taken every other week from May to August 2023, totaling eight measurement. Regarding the characteristics of the soil planted with lettuce and aromatic plants, the combined planting of lettuce and garlic chives created a favorable soil environment for plant growth. Consequently, the best growth was observed when lettuce and garlic chives were companion planted. Companion planting of lettuce and garlic chives appears to be the most efficient concerning growth and physiology. The productivity of companion planting lettuce and aromatic plants also showed high-quality lettuce when lettuces and garlic chives were companion planted. Therefore, companion planting of lettuces and garlic chives in rooftop urban agriculture is suitable for growth, physiology, and productivity.

Evaluation on Actual Condition and Image Analysis of Roof Garden in Seoul, Korea (서울시 옥상농원의 실태분석 및 이미지 평가에 관한 연구)

  • Kong, Min-Jae;Park, Kwang-Lai;Son, Jin-Kwan;Shin, Ji-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.69-83
    • /
    • 2012
  • Urbanization has caused increase of traffic jams, food shortage, housing, and environmental pollution in the world in recent decades. Urban agriculture, such as roof garden, can relieve the phenomenon of urban heat island causing from the urbanization. The study was conducted to investigate the characteristics of rooftop garden (farm) in 40 areas in Seoul, Korea, where the 'cabbage', 'lettuce', 'pepper', and 'mini-tomatoes' were the most preferred vegetables and fruit. The problems in the rooftop garden during a cultivation was observed for drainage system, soil management, cost or quality of planting mat and diseases and insects. The image of urban agriculture showed a positive words, such as 'bright', 'clean', 'open' and 'good' according to the survey.

Effect of Planting Patterns on the Cultivation of Eggplant (Solanum melongena) and Marigold (Tagetes erecta) for the Activation of Eco-Friendly Rooftop Urban Agriculture (친환경 옥상 도시농업 활성화를 위한 배식모형에 따른 가지(Solanum melongena)와 메리골드(Tagetes erecta) 식재효과)

  • Jae-Hyun Park;Sang-Il Seo;Deuk-Kyun Oh;Yong-Han Yoon;Jin-Hee Ju
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.417-425
    • /
    • 2024
  • This study investigated the effects of various planting models on the joint cultivation of eggplant (Solanum melongena) and marigold (Tagetes erecta)to enhance sustainable rooftop urban farming. Rooftop agriculture is increasingly valued to boost the food supply and benefit the environment. Integrating such practices into urban planning is viewed as a way to sustainably manage resources and improve the food-energy-water cycle in cities. The experiment was conducted on a rooftop in Chungju, South Korea from May to August. Four different planting setups were used: central eggplant with peripheral marigold (SET), eggplant with a protective net (SIC), central marigold with peripheral eggplant (TES), and control with only eggplant (CON S). These models tested the effects of companion planting versus monoculture using a lightweight soil mix ideal for rooftops made from cocopeat and perlite and enriched with organic fertilizer. Measurements focused on soil conditions and plant health and assessed soil temperature, moisture, conductivity, plant height, width, and leaf size. The results indicated that the SET modelyielded the best growth. This setup benefited from marigold pest control properties and its ability to improve soil conditions by enhancing moisture and nutrient levels and aiding eggplant growth. These findings underscore the potential of mixed planting on rooftops and suggest that such approaches can be effectively incorporated into urban agriculture to boost yield and environmental sustainability. This study supports the idea that diverse planting methods can significantly affect plant growth and promote urban greening and food security.

Effects of Companion Planting with Tagetes patula on the Growth and Pest Control of Brassica campestris in Rooftop Urban Agriculture (옥상 도시농업에서 메리골드의 동반식재 비율이 배추의 생육 및 해충방제에 미치는 영향)

  • Park, Sun-Young;Min, Kyung-Min;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.825-832
    • /
    • 2022
  • This study aimed to explore companion planting to improve vegetable productivity on extensive green roofs through urban agriculture with limited substrate depth. From May to July 2021, the study conducted on the rooftop to evaluate the effects of marigold (Tagetes patula) planting ratio on the growth and pest control of cabbage (Brassica campestris). The experiment plot measured 1 m in width × 1 m in length × 0.25 m in height and 0.2 m in substrate depth. Fifteen plots were planted in varying proportions of cabbage and marigold for three repetitions per treatment: cabbage control (CC), 2:1(C2M1), 1:1(C1M1), 1:2(C1M2), and marigold control (MC). We found that companion planting marigolds with cabbage significantly increased cabbage growth and reduced pest infestation. The study revealed that C1M1, when cabbage and marigold have the same proportion, is an efficient companion planting ratio. Companion planting, in which non-crop vegetation manages pests and increases crop productivity, improves natural pest control and preserves biodiversity on rooftop urban agriculture.

A Case Study on the Farming Experience to Spread the Value of Urban Agriculture

  • Kim, Gokmi;Ahn, Jia
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.144-150
    • /
    • 2019
  • Recently, an increasing number of urban farmers are growing fresh vegetables and fruits themselves using urban garden or weekend farms. In other words, this is called urban agriculture. After the Industrial Revolution in the 18th century, the agricultural society changed from an agricultural society to an industrial society, and the population began to flock to the cities. With the continued increase of urban population, countries with abundant capital were able to control the distribution structure of food supplies and trade agreements among countries. Since energy consumption and carbon dioxide emissions caused by agricultural product movements have emerged as the main culprits of global warming, and our table is threatened by safety due to food supply that has no genetic modification or knowledge of the cultivation process, urban agriculture is already taking hold in the West. In other words, as agriculture met cities, its role grew. Each region actively conducts agricultural activities for raising poultry as well as growing vegetables and fruits by using flower beds of detached houses in the city center, rooftops of high and low buildings, or school playgrounds and small tributaries of land. The purpose of this study is to analyze and understand the significance and type of urban agriculture and to examine the cases of domestic and foreign urban agriculture based on this and to seek the developing direction of urban agriculture, which is gradually increasing. Tired of growing competition and rapid change, urbanites are seeking health and relaxation and are planning to present development measures for urban farming and conduct follow-up research to ensure safe food.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Effect of Intercropping Ratio on the Cherry Tomato with Basil on the Growth, Physiological, and Productivity Parameters on the Rooftop in Urban Agriculture (옥상 도시농업에서 방울토마토(Lycopersicon esculentum)와 바질(Ocimum basilicum)간의 공영식재가 생육, 생리, 생산성에 미치는 영향)

  • Ju, Jin-Hee;Song, Hee-Yeon;Oh, Deuk-Kyun;Park, Sun-Yeong;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.709-717
    • /
    • 2021
  • This study evaluated the growth, physiological responses and productivity based on the intercropping ratio of cherry tomato (Lycopersicon esculentum L.) with basil (Ocimum basilicum L.). on the rooftops to determine out the efficient ratio in urban agriculture. From April to September 2019, an experiment was conducted on the rooftop of Konkuk University Glocal Campus. Cherry tomato and basil were selected as companion plants for eco-friendly urban agriculture on the rooftops. Each plot was created with a width of 100 cm, length of 100 cm, and height of 25 cm. After installing drainage and waterproof layers from bottom to top, substrate was laid out with a height of 20 cm. Intercropping ratio was consisted of a single tomato plant (TC), 2:1 tomato to basil (T2B1), 1:1 tomato to basil (T1B1), 1:2 tomato to basil 2 (T1B2), and a single basil plant (BC), were conducted using a randomized complete plot design with five treatments and three replication (a total 15 plots). Measurements were divided into growth, physiological responses, and productivity parameters, and detailed items were investigated and analyzed by classifying them into plant height, leaf length, leaf width, number of leaves, root length, root collar caliper, chlorophyll contents, fresh weight, dry weight, number of fruit, fruit caliper, fruit weight, and sugar content. Comparative analyses of cherry tomato with basil plants by intercropping ratio, growth, physiological, and productivity responses are determined to be efficient when the ratio of cherry tomato to basil ratio is 2:1 or 1:1.

Characteristics of Soil Moisture Rate for Optimal Growth Conditions on Greenroof Plants (옥상녹화 식물의 최적생육을 위한 토양수분 특성 연구)

  • Kim, Si-Man;Han, Seung-Won;Jang, Ha-Kyung;Kim, Jae-Soon;Jeong, Myung-Il
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.947-951
    • /
    • 2015
  • This study presents proper irrigation interval for the soil condition of green roof system and the smooth growth of the landscaping herbaceous plants available and reveal the need for irrigation in rooftop conditions. Twenty kinds of greenery plants are tested on ground paved wood panels where rain and wind shielder is installed. Before test, irrigation is conducted fully to experimental plants and then soil moisture in pot is measured after every ten minutes. In conclusion, it is suggested that the irrigation has to be carried out every 4~5 days in order to minimize water and heat stress of plants. Also, irrigation management is an essential prerequisite for good condition and the smooth growth of plants and environmental effects in green roof system.