• Title/Summary/Keyword: Roof-harvested water

Search Result 4, Processing Time 0.019 seconds

Comparison on the Releasing Characteristics of Asbestos Fiber from Plant Slate Roof and House Slate Roof (공장과 주택 슬레이트지붕의 석면 노출특성 비교)

  • Jeong, Jae-won;Yoo, Eun-chul;Lee, Sang-Jonn;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.927-937
    • /
    • 2015
  • This study was performed to identify and quantify the asbestos fibers released from two types of asbestos-cement slate roofs. One is a plant roof installed in 1987 which contained 15% chrysotile, and the other is a residential roof installed before 1983 which contained 12% chrysotile. The concentrations of asbestos fibers in air surrounding asbestos-cement slate roofs and in the falling water harvested from the same roofs on rainy days ranged from 0.0012 to 0.0018 f/mL and from 1,764 f/L to 10,584 f/L, respectively. The concentration of inorganic fibers in the soil around asbestos-cement slate roofs was from 217 to 348 f/g. With the above results, the excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate based on US EPA IRIS (Integrated risk information system) model is within 5.5E-06 ~ 6.5E-06 levels which indicates that the levels do not exceed "the acceptable risk(1.0E-05)" recommended by WHO. The asbestos concentration in air, drained rainfall and soil around the plant slate roof was higher than that around residential slate roof, but the excess lifetime cancer risk (ELCR) from residential slate was higher than that from plant slate. This suggested that the enclose and encapsulation of residential roofs have priority in removal policy to minimize the exposure risk.

The Study for the Long-Term Rainwater Storage Quality Effect after Chlorination (염소 소독에 의한 저장빗물수질 유지효과 연구)

  • Park, Heesoo;Kim, Sungpyo
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • The purpose of this study is to monitor the rainwater flowing from the roof of buildings and to maximize the effectiveness of the rainwater storage. This study also analyses the changes in rainwater characteristics before and after subsequent chlorination disinfection. The stored rainwater was disinfected by chlorine and then analyzed for COD, TN, TP, enteric bacteria, and general microbial population changes over time. There was an observed 99% reduction of enteric bacteria and common microbes within two weeks after chlorine injection. Thus, chlorine disinfection of rainwater improves water quality for long-term storage and future use.

Rainwater Harvesting System as an Alternative Water Source

  • Kim, Phil-S.;Yoo, Kyung-H.;Kim, Sun-Joo;Lee, Nam-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.524-528
    • /
    • 2009
  • The objectives of this study were to install RCR systems at a typical single family house and a school in Alabama, and evaluate the feasibility and efficiency of using the RCR systems for water harvesting in Alabama. The RCR systemswere equipped with a control system and a CR10X data logger to monitor the system operation and to collect data on precipitation, temperature, overflow, water depth in the storage tank and daily uses of toilet flushing. Daily average water use of the home for toilet flushing was 95 liter and 2100 liter was used at the school during the school days. Rainwater harvesting efficiency was 83.3 and 89 percent and RCR use efficiency was 18 and 98 percent from the home and the school, respectively. A computer program was developed to estimate potential effectiveness of RCR systems. From the analysis result with 10 years rainfall data, a total of 67,000 liters of rainwater could be harvested for domestic uses from a typical single family house which supplies 190 liters per day.

  • PDF

The Removal of Nutrients and Heavy Metals Using Household Rain garden (가정용 빗물정원을 이용한 지붕빗물내 영양소 및 중금속 제거)

  • Pak, Gijung;Park, Heesoo;Cho, Yunchul;Kim, Sungpyo
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • In Korea, most rainfall events occur during summer which then leads to an increasing concern regarding high influx of non-point source pollutants since the pollutant loadings from these non-point sources are very significant. In particular, the first flush of roof-harvested rainfall is said to contain the most highest concentration of nutrients and heavy metals. Accordingly, it is important to develope the possible water quality management options in treating the contaminants and considering reclaimed water reuse. The rain garden could be one of suitable alternatives in addressing this issue. In this study, the development of an effective adsorption media and its application to a lab-scale rain garden was tested to evaluate the removal rate of various nutrient and organic matter (TN, TP, CODcr), and heavy metals (Cu, Cd, Pb). Results showed that carbonized peatmoss produced at higher temperature have better adsorption capacity as compared to the one produced at a lower temperature. When the carbonized peatmoss was applied as rain garden media, the highest removal of TN, TP, and CODcr was observed compared to no carbonized peatmoss applied rain garden. Therefore, this study showed that the carbonized peatmoss would be effectively applied to the rain garden for removing nutrients and heavy metals from roof-harvested rainwater.