• Title/Summary/Keyword: Roof

Search Result 2,227, Processing Time 0.028 seconds

Wind flow modification by a jet roof for mitigation of snow cornice formation

  • Kumar, Ganesh;Gairola, Ajay;Vaid, Aditya
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.115-126
    • /
    • 2021
  • The snow cornice mass on the formation zone had triggered avalanches which led to the loss of human life and property. Snow cornice is formed due to flow separation on the leeward side. Effect of lee slope is more prominent in the formation of snow cornices as compared to the windward slope. The analysis of wind flow pattern has been carried out to evaluate the performance of a jet roof. Computational Fluid Dynamics (CFD) analysis of wind flow over a 2D hill model was carried out using RNG based k-∈ turbulence models available in ANSYS Fluent. Effect of varying leeward hill slope (1:2 to 1:6) on flow separation for the given windward slope was observed and a critical slope of 1:4 was found at which the separation zone ceased to exist. The modification of wind flow over a hill due to the installation of jet roof was simulated. It was observed that jet roof had significantly modified the wind flow pattern around hill ridgeline and ultimately snow cornice formation had mitigated. The results of the wind flow pattern were validated with the wind data collected at the experimental site, Banihal Top (Jammu and Kashmir, India). The wind flow simulation over the hill and mitigation of cornice formation by the jet roof has been explained in the present paper.

A Study on the Building Design Guideline Development Considering Photovoltaic Panel Installation (태양광 패널 설치를 고려한 건축 디자인 지침 개발 연구)

  • Moon, Chang-Ho
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to propose the building design guideline considering photovoltaic panel installation through the analysis of relevant guidelines from home and abroad in terms of building design and solar panel installation. Conclusions can be summarized as followings; Considerations in building design : selection of the site with high solar accessibility, avoidance of the shade from the adjacent building & trees, south facing orientation of solar panel in building design, removal of shade on the solar panel from the part of building itself, load consideration of solar panel & fixing materials, safe passage securement for solar system maintenance, and planning of piping and mechanical room for solar system. Considerations in solar panel installation : harmonizing of solar panel with surrounding environment, unity of solar panel orientation & slope, regular maintenance of solar system, (in case of flat roof installation) solar panel installation afloat over the roof, installation area within the roof floor, and lower than parapet height, (in case of sloped roof installation) solar panel installation parallel with the roof slope, ventilation space securement below the panel, installation area within the roof surface, and similar material installation in empty space.

Parametric analysis of hybrid outrigger system under wind and seismic loads

  • Neethu Elizabeth Johna;Kiran Kamath
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.503-518
    • /
    • 2023
  • In tall constructions, the outriggers are regarded as a structural part capable of effectively resisting lateral loads. This study analyses the efficacy of hybrid outrigger system in high rise RCC building for various structural parameters identified. For variations in α, which is defined as the ratio of the relative flexural stiffness of the core to the axial rigidity of the column, static and dynamic analyses of hybrid outrigger system having a virtual and a conventional outrigger at two distinct levels were conducted in the present study. An investigation on the optimal outrigger position was performed by taking the results from absolute maximum inter storey drift ratio (ISDmax), roof acceleration (accroof), roof displacement (disproof), and base bending moment under both wind and seismic loads on analytical models having 40, 60 and 80 storeys. An ideal performance index parameter was introduced and was utilized to obtain the optimal position of the hybrid outrigger system considering the combined response of ISDmax, accroof, disproof and, criteria required for the structure under wind and seismic loads. According to the behavioural study, increasing the column area and outrigger arm length will maximise the performance of the hybrid outrigger system. The analysis results are summarized in a flowchart which provides the optimal positions obtained for each dependent parameter and based on ideal performance index which can be used to make initial suggestions for installing a hybrid outrigger system.

Analysis of surface design and panel optionsfor freeform building

  • Min Gyu Park;Han Guk Ryu
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.553-557
    • /
    • 2013
  • Roof and exterior wall are designed and constructed in a manner that prevents the accumulation of water within the wall and roof assembly in the formal building. However, in a freeform building there is no clear distinction between exterior wall and roof. In other words, the exterior walls and roof systems of the freeform building are integrated as a surface, unlike the formal building envelope. Therefore, freeform architecture needs a systemized envelope design method to perform functions of exterior wall and roof. However, in many cases, construction methods for roof and exterior wall are applied to freeform buildings without necessary alterations, which lead to incomplete design, leakage, cracks and other problems. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. The studies and case analysis are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces. This study attempts to analyze the pros and cons of each method for the concrete surface frame, and then presents the panel options for envelope system of the freeform architecture.

  • PDF

Study on roof tiles of Iksan featuring Stamped-Roof Tiles (인각와를 통해 본 익산의 기와에 대한 연구)

  • Lee, Da-Un
    • KOMUNHWA
    • /
    • no.70
    • /
    • pp.89-108
    • /
    • 2007
  • Stamped-Roof Tiles, the characteristics of Baekje Tiles are one of the most frequently excavated tiles in Iksan. Considering the types and amount of excavation of the Stamped-Roof Tiles unearthed in Iksan area, it seems that these are closely related with a Royal family. The tiles might be manufactured by a particular gorup of file maker since they are produced with same way. Referring the Ganji carved in the Stamped-Roof Tiles, I suppose that the tiles were produced and used in two time periods, the time around enthronement of The King Mu and the second quarter of the 7th century around Gichuk, AD. 629. In addition, Convex Tiles used in Wanggung-ri Site and Mireuk Site was also produced in same time as the Stamped-Roof Tiles, considering there pattern and the amount of excavation. The social background of tile production was analogized based on the technology and the time of the tile manufacture as well as the characteristics of the Stamped-Roof Tiles which represent the Obu and the Ohang. The production of the tiles was supported by Obu which aided the King Mu-oriented construction project the economic capacity of the Royal family was not enough to promote. The tile production system was totally controled by the Royal family and the inspector, neither producer nor donator, examined the quantitation of the tiles and generated the imprint of a seal with the Stamped-Roof Tiles.

  • PDF

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

An Analysis of Thermal Environment Change according to Green Roof System (옥상녹화 조성에 따른 열환경 변화분석)

  • Park, Ji-Young;Jung, Eung-Ho;Kim, Dae-Wuk;Cha, Jae-Gyu;Shimizu, Aki
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.11a
    • /
    • pp.100-103
    • /
    • 2009
  • The impermeable area on the surface of city has been increased as buildings and artificial landcover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural eco system. There arise the environmental problems peculiar to city including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate the heat reduction effect according to the development of green roof system and to quantify the heat reduction effect by analyzing through simulation the heat environment before and after green roof system. For thermal environment analysis, Thermo-Render 3.0 was used that was developed by Tokyo Industrial College to simulate. The simulation showed that the heat island index before and after the development of tree-planting on rooftop changed maximum $0.86^{\circ}C$ and the surface temperature changed about $20^{\circ}C$. Only with lawn planting, heat reduction effect was great and it means that the green roof system in low-management-light-weight type is enough to see effect. The simulation identified that only lawn planting for green rooftop brought such difference and could lower the heat island index at a narrow area. It is judged that application of green roof system to wider areas might relieve urban heat island phenomenon positively.

  • PDF

Optimized Design of Roof Structure in LNG Storage Tank (LNG저장탱크의 지붕 구조물에 관한 최적설계 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.36-43
    • /
    • 2005
  • In this paper, the optimized design of a roof structure f3r a LNG outer tank has been analyzed using the Taguchi design method. This method may efficiently optimize the design parameters of a LNG roof structure in terms of H beam and L beam structures, and a thickness of a concrete structure. The FEM computed results indicate that the thickness of a concrete structure is a dominant factor of a roof structure design. The H and L beam structures do not affect a maximum stress and deformation of a reinfarced roof structure. This means that H and L beam structures only support a dead weight of a concrete roof during a consolidation of a reinforced concrete. Based on the computed results by the Taguchi design method, the number of beams and thickness of a reinforced concrete are given as H=30, L=7, and t=1.2m.

  • PDF

Development of Impact and Fire Hazard Analysis on the Steel Roof of LNG Storage Tank (LNG 저장탱크 강재지붕의 충격 및 화재에 대한 안전성평가기법 개발)

  • Lee, Seung-Rim;Park, Jang-Sik;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • Traditionally all concrete roof type LNG storage tank have been constructing in Korea regardless of LNG tank types. But a steel roof LNG storage tank has merits relatively in designing larger scale tanks and construction cost so it is on the table to apply. This study was carried for the standardized development of impact and fire hazard analysis on a 200,000$k{\ell}$ steel roof LNG storage tank designed by KOGAS and for getting quantitative safety data on a steel roof LNG storage tank compared with a conventional concrete roof LNG storage tank by evaluating with this method. Hazard analysis on each four impact and fire scenarios were developed and evaluated by using finite element methods.

  • PDF

The changing characteristics of Material and Structure of Rural Housing in the aspect of Period and Region (지역별·시기별 농촌주택의 재료 및 구법 특징 변화 연구)

  • Bae, Woong-Kyoo;Joo, Dae-Khan;Jeong, Dong-Seop;Yun, Yong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6504-6513
    • /
    • 2013
  • The result can be summarized as follows. First, the following periodically changing characteristics were examined:roof form(gambrel/hipped-flat-gable), structure of roof and wall(wood-framed-cement masonry-RC-Light iron framed), roof material(thatched-tiled-slate-cement/steel sheet-asphalt/sandwich panel/mortar water-proofing), wall material(clay plaster/lime plastered-dressing tile/bricks-painting on the cement plastering-native stone dressing/siding/tile), fence material(masonry of stone and cement bricks), and courtyard materials(clay and concrete). Secondly, the regionally changing characteristics of those elements, rural housing structure, roof form, roof structure material, wall finishing material, fence and courtyard material in the outer space, differed according to the location of rural housing, i.e.north, middle, south region. The changing characteristics of both the roof structure and wall structure are similar to those of the three regions.