• Title/Summary/Keyword: Rolltainer

Search Result 2, Processing Time 0.054 seconds

Development of a Robot System for Automatic De-palletizing of Parcels loaded in Rolltainer (롤테이너 적재 소포를 자동으로 디팔레타이징하기 위한 로봇 시스템 개발)

  • Kim, Donghyung;Lim, Eul Gyoon;Kim, Joong Bae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.431-437
    • /
    • 2022
  • This paper deals with a study on the automatic depalletizing robot for parcels loaded in rolltainer of domestic postal distribution centers. Specifically, we proposed a robot system that detect parcels loaded in a rolltainer with a 3D camera and perform de-palletizing using a cooperative robot. In addition, we developed the task flow chart for parcel de-palletizing and the method of retreat motion generation in the case of collision with rolltainer. Then, we implemented the proposed methods to the robot's controller by developing robot program. The proposed robot system was installed at the Anyang Post Distribution Center and field tests were completed. Field tests have shown that the robotic system has a success rate of over 90% for depalletizing task. And it was confirmed that the average tact time per parcel was 7.3 seconds.

Derivation and verification of scenarios for underground logistics rolltainer (지하물류 운송용기 평가 시나리오 도출 및 검증)

  • U Ri Chae;Joo Uk Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.76-89
    • /
    • 2024
  • This study investigates the impact of standardized underground logistics conainers on lower body muscle activation during warehouse tasks, comparing conventional roll containers(A type) with newly developed ones(B type). Through a detailed experimental setup involving electromyography(EMG) and tensiomyography(TMG), muscle activities of the lower limbs were quantitatively analyzed during loading unloading and transporting tasks. Results indicated no significant difference in muscle activation patters between the two rolltainer types, suggesting that the dimensions of these containers do not critically affect the muscular strain and workload. Furthermore, the TMG analysis revealed that muscle contraction velocity(Vc) increased in certain muscles when using the B-type rolltainer, indicating a potential for more efficient muscle engagement without increasing fatigue. This research underscores the importance of ergonomic considerations in the design of logistics equipment and suggests that further studies should focus on optimizing the interaction between human operators and logistical systems to enhance safety and efficiency in warehouse operations.