• 제목/요약/키워드: Rolling load

검색결과 300건 처리시간 0.025초

듀얼 빔 전단간섭계를 이용한 압연방향에 따른 기계구조용 탄소강의 면내 변위 정량적 측정에 대한 연구 (A Study on the Quantitative Measurement of In-plane Displacement of Carbon Steel for Machine Structures according to Rolling Direction using a dual-beam Shear Interferometer)

  • 강찬근;김상채;김한섭;이항서;정현일;정현철;송재근;김경석
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an in-plane deformation measuring system using a dual-beam shear interferometer was constructed to measure the in-plane deformation of the measuring object. The in-plane deformation of the object was quantitatively measured according to the load and surface treatment conditions of the object. We also verified the reliability of the proposed technique by simultaneously performing the technique with an electronic speckle pattern interferometry system (ESPI), which is another laser application measurement technology. Digital shearography directly measures the deformation gradient or strain components and has the advantages of being full-field, noncontact, highly sensitive, and robust. It offers a much higher measurement sensitivity compared with noncoherent measurement methods and is more robust and applicable to in-field tests.

레일손상에 의한 윤중증가를 고려한 표면균열 성장예측 (Prediction of Surface Crack Growth Considering the Wheel Load Increment Due to Rail Defect)

  • 전현규;최진유;나성훈;유원희
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1078-1085
    • /
    • 2011
  • Prediction of a minimum crack size for growth, which is defined as a crack size that grows fast enough to keep ahead of its removal by contact wear and periodic grinding, is the most demanding work to prevent rail from fatigue failure and develop cost effective railway maintenance strategy In this study, we investigated the wheel load increment due to a rail defect during a train ran over it, and its effect on the minimum crack size for growth. For this purpose, we developed simulation software based on the Fletcher and Kapoor's "2.5D" model and measured wheel load increment during a train passed over a defect. A maximum contact pressure and contact patch size were calculated by 3D FEM and crack growth analyses were performed by varying two of dominant contact contributors; surface friction coefficient(0.1, 0.2, 0.3 and 0.4) and crack aspect ratio. The minimum crack sizes for growth were calculated from 0.29 to 1.44mm depending on the contact conditions. They were decreasing with increasing surface friction coefficient and decreasing with crack aspect ratio(a/b).

RPG 시스템의 접촉 피로수명 (Contact Surface Fatigue Life for RPG System)

  • 남형철;권순만;신중호
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1453-1459
    • /
    • 2011
  • 외접기어의 어느 한쪽 기어를 핀 또는 롤러로 대체한 롤러 피니언 기어 (RPG) 시스템은 기어 치물림 시 미끄럼 접촉을 줄이고 구름운동을 증대시켜 기어 내구성을 향상시킬 수 있다. 우선 본 논문에서는 전위계수(profile shift coefficient)를 고려하여 RPG 시스템의 캠 기어(cam gear)의 엄밀 치형설계 방법 및 치 꼬임으로 인한 간섭 방지조건을 제시하였다. 또 기어구동에 있어 치면에서 발생되는 진동이나 소음의 원인이 되는 피팅(pitting) 발생수명을 고려하기 위해, 설계인자의 변화에 따른 Hertz 접촉응력 및 하중응력계수(load stress factor)의 변화를 검토하였다. 이를 통해 RPG 시스템의 내구성을 향상시킬 수 있는 방안으로 전위계수의 증가를 제안하였다.

압착되어 회전하는 강체/변형 롤의 동적 특성에 관한 수치해석 연구 (A Numerical Study on Dynamic Characteristics of Counter-Rotating Rigid/Deformable Rolls in Press Contact)

  • 이문규;이상혁;허남건;서영진;김인철;이성진
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.869-876
    • /
    • 2011
  • 동적 특성에 영향을 받는 롤 코팅의 평형적인 두께 예측과 불안정성을 분석함은 중요하다. 본 연구에서는 강체/변형롤 사이에서 생성되는 마이크로 코팅액의 두께를 예측하기에 앞서 압착되어 회전하는 두 롤 사이에 발생하는 접촉 압력의 분포와 변형롤의 변형 형상을 예측하고자 한다. 또한 변형롤의 재료상수와 롤의 속도 및 마찰계수 그리고 압착 크기 등의 변수들에 대한 접촉압력분포를 수치적인 방법으로 측정하여 유효한 변수들의 영향을 분석하고자 한다. 수치해석 방법으로는 유한요소법을 사용하였고 두 롤을 모델링하여 변형롤에 고무물성치를 초탄성체 모델로 가정하여 일반적으로 사용되는 Mooney Rivlin 계수를 사용하였고 40~80rpm 사이의 속도로 회전할 때 접촉 형상 및 압력분포를 분석하였다. 접촉형상의 경우 압착정도에 따라 변하고 그외 변수들에는 영향을 받지 않고 접촉압력의 경우 변형롤의 물성치와 압착정도에 의해 주요한 영향을 받고 속도 및 마찰계수에는 영향을 받지 않음을 알 수 있다.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

파쇄기용 코일스프링의 파손에 관한 연구 (A study on the Fracture of Coil Spring)

  • 정형식;안세원;이종형;최성대
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2006
  • The study is diagnosis about fatigue failure phenomenon of heating coil spring (sup9) and heat treatment method that is used to crusher. Because more than 80~90% of damage announcement of breakdown of machine and construction is been caused in fatigue present state, fatigue failure became important leading person at design. Calculated design load is imposed repeatedly that fatigue breakdown is safe. Is phenomenon that change load is imposed in the construction continuously. Used coil spring applies heat 30minute by Quenching temperature $860^{\circ}C$ if see manufacturing process and temperature of gasoline of $50^{\circ}C$ keep after quench that know tempering a $460^{\circ}C$ 90minute a product be. If doto apply heat $950^{\circ}C$ material at rolling process historically before quenching, austenite formation clay pipe being done AGS(Austenite Grain Size) by 2.5~4 become. Apply heat quenching 30minute by $820^{\circ}C$ by improvement method and after quench that keep $50^{\circ}C$ in oil tempering if do $450^{\circ}C$, 90minute spring ideal formation sorbite formation of the river form and condition that satisfy most more than AGS 7 appeared. Also, we can secure authoritativeness through MT since shot peening processing.

  • PDF

위상최적설계를 통한 트레일러 제5차륜 연결구조물의 경량화 및 내구성 (New Weight-reduction Design of the Fifth Wheel Coupler with a Trailer by Using Topology Optimization and Durability Tests)

  • 김철;이승윤;이영춘
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.137-143
    • /
    • 2016
  • The fifth wheel coupler is a heavy automotive coupling structure which connects a tractor and a trailer used for heavy-duty trucks widely. It is subjected to various loads simultaneously such as rolling, pitching and yawing loads as well as coupling frictional and impact loadings. Most of existing couplers have been overdesigned and, therefore, it is necessary to reduce the dead weight to increase the fuel efficiency. The topology optimization was applied in order to find conceptual layout designs which could show major load paths and ribs locations, and then the size structural optimization was performed in order to determine the heights and thicknesses of coupler ribs with the predetermined various loading conditions for the development of a new slim coupler with a minimum weight and high enough strength and stiffness. As the results of the topology optimum design, an efficient new coupling structure for truck trailers was designed. The weight of the new fifth wheel coupler was reduced by 4.9 %, compared with the existing one, even though all strength requirements were satisfied. The fatigue test of the new coupler was performed with cyclic vertical loads (+78.4 to +235.2 kN) and horizontal loads (-91.2 to +91.2 kN) simultaneously at 1 Hz and the life of 2,000,000 cycles were achieved without failure.

부하토크외란관측기를 이용한 1C-4M 축소형 철도차량장치의 점착력 추정에 의한 Anti-Slip 제어 (Anti-Slip Control by Adhesion Effort Estimation of 1C-4 Minimized Railway Vehicle using Load Torque Disturbance Observer)

  • 전기영;조정민;이승환;오봉환;이훈구;김용주;한경희
    • 전력전자학회논문지
    • /
    • 제8권4호
    • /
    • pp.366-374
    • /
    • 2003
  • 본 논문에서는 최대 견인력 제어를 위해서 부하 토크 외란 관측기를 이용하여 점착력 계수를 추정하고 추정한 점착력 계수의 미분치를 PI 토크 제어하는 Anti-slip 제어를 제안한다. 부하 토크 외란 관측기는 회전자의 위치 정보와 토크 전류의 정보를 이용하여 부하 외란 토크를 추정하고, 부하 외란 토크에 철도차량 상수를 미용하여 점착력 계수를 추정한다. 또한 부하토크외란 관측기는 구조가 간단하며, 시스템의 외란 및 각종 제어이득. 시스템의 상수 변화에 대해서도 견실한 견인력 제어 특성을 가지고 있다. 이와 같은 제어 알고리즘을 구현하기 위하여 IC4M(1-Controller 4-Motor) 축소형 철도차량시스템을 이용하여 제안된 알고리즘을 시뮬레이션과 실험을 통하여 확인하였다. 또한 실제 철도차량시스템의 경우 선로 표면의 상태 변화 및 차량속도의 가감에 따른 공전속도에 대한 점착력의 관계를 축소형 철도차량시스템으로 구현하여, 실제 철도차랑시스템의 경우와 비교 분석하여 최대 견인력제어가 되도록 하였다.

복열테이퍼 롤러베어링 지지특성에 따른 오버헝 회전축 시스템의 동적 거동 예측 및 접촉부 압력 해석 (Prediction of the Dynamic behavior and Contact Pressure of Overhung Rotor Systems According to the Support Characteristics of Double-row Tapered Roller Bearings)

  • 김태우;서준호;김민수;유용훈
    • Tribology and Lubricants
    • /
    • 제39권4호
    • /
    • pp.154-166
    • /
    • 2023
  • This study establishes a numerical analysis model of the finite element overhung rotor supported by a DTRB and describes the stiffness properties of the DTRB. The vibration characteristics and contact pressure of the RBR system are predicted according to the DTRB support characteristics such as the initial axial compression and roller profile. The stiffness of the DTRB significantly varies depending on the initial axial compression and external load owing to the occurrence of rollers under the no-load condition and increase in the Hertz contact force. The increase in the initial axial compression increases the rigidity of the DTRB, thereby reducing the displacement of the RBR system and simultaneously increasing the natural frequency. However, above a certain initial axial compression, the effect becomes insignificant, and an excessive increase in the initial axial compression increases the contact pressure. The roller crowning radius, which gives a curvature in the longitudinal direction of the roller, decreases the displacement of the RBR system and increases the natural frequency as the value increases. However, an increase in the crowning radius increases the edge stress, causing a negative effect in terms of the contact pressure. These results show that the DTRB support characteristics required for reducing the vibration and contact pressure of the RBR system supported by the DTRB can be designed.

Effects of Test Temperature on the Reciprocating Wear of Steam Generator Tubes

  • Hong, J.K.;Kim, I.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.379-380
    • /
    • 2002
  • Steam generators (S/G) of pressurized water reactors are large heat exchangers that use the heat from the primary reactor coolant to make steam in the secondary side for driving turbine generators. Reciprocating sliding wear experiments have been performed to examine the wear properties of Incoloy 800 and Inconel 690 steam generator tubes in high temperature water. In present study, the test rig was designed to examine the reciprocating and rolling wear properties in high temperature (room temperature - $300^{\circ}C$) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of steam generator tube materials. To investigate the wear mechanism of material, the worn surfaces were observed using scanning electron microscopy. At $290^{\circ}C$, wear rate of Inconel 690 was higher than that of Incoloy 800. It was assumed to be resulted from the oxide layer property difference due to the a\loy composition difference. Between 25 and $150^{\circ}C$ the wear loss increased with increasing temperature. Beyond $150^{\circ}C$, the wear loss decreased with increasing temperature. The wear loss change with temperature were due to the formation of wear protective oxide layer. From the worn surface observation, texture patterns and wear particle layers were found. As test temperature increased, the proportion of particle layer increased.

  • PDF