• Title/Summary/Keyword: Rolling element bearings

검색결과 52건 처리시간 0.026초

볼 베어링의 구름 요소 주위 유동 특성에 대한 해석 (Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings)

  • 조준현;김충현
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.

구름 베어링의 퍼지 결함 진단에 관한 연구 (Fuzzy Defects Diagnosis of Rolling Element Bearings)

  • 양보석;전순기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.85-93
    • /
    • 1994
  • A new diagnosis method is developed in this paper, in which the fuzzy set theory is introduced to diagnose the defects of rolling element bearings. The selection of membership function and the fuzzy operation model are discussed in detail here. The system is successfully used for various defects diagnosis of rolling element bearings.

  • PDF

구름 베어링의 결함 주파수 규명을 위한 방향 스펙트럼의 이용 (Identification of Defect Frequencies in Rolling Element Bearing Using Directional Spectra of Vibration Signals)

  • 박종포;이종원
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.393-400
    • /
    • 1999
  • Defect frequencies of rolling element bearings are experimentally investigated utilizing the two-sided directional spectra of the complex-valued vibration signals measured from the outer ring of defective bearings. The directional spectra make it possible to discern backward and forward defect frequencies. The experimental results show that the directional zoom spectrum is superior to the conventional spectrum in identification of bearing defect frequencies, in particular the inner race defect frequencies.

  • PDF

ROLLING ELEMENT BEARING LUBRICANT DEBRIS DAMAGE ASSESSMENT AND LIFE PREDICTION

  • Hoeprich, Michael R.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.461-462
    • /
    • 2002
  • Rolling element bearing fatigue life can be significantly reduced by debris particles in lubricants. The debris particles cause raceway surface dents that initiate early fatigue damage. Optical interferometry has been found to be the best method for characterizing bearing raceway debris dent damage. This technique is used to determine the important features, sizes and density of dents. The resulting data file is then used to determine bearing fatigue life. Tests show that bearings manufactured by different processes and material types are affected differently by debris damage and that these differences must be considered by life prediction methodologies. Bearings made by a specific enhanced process can significantly resist the deleterious effects of debris damage and outperform bearings made by other means.

  • PDF

EHL Analysis of Rolling Bearings Considering the Effect of the Number of Rolling Elements and the Shaft Load

  • Hong, Sung-Ho;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • 제10권1_2호
    • /
    • pp.17-22
    • /
    • 2009
  • The numerical analysis of elastohydrodynamic lubrication for the ball and roller bearings is performed in order to study the effect of the number of rolling elements and the shaft load on the minimum film thickness. A finite difference method and the Newton-Raphson method are used in the analysis. For a given shaft load, the maximum load of rolling element is determined along with the number of rolling elements. And then the minimum film thickness is calculated for several rolling bearings. The shape of film thickness and the pressure distribution are also studied.

롤러 베어링에서의 결함의 자동진단 (Automatic Diagnosis of Defects in Roller Element Bearings)

  • 유정훈;윤종호;김성걸;이장무
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.353-360
    • /
    • 1995
  • A new automatic diagnostic system for predicting multiple defects in rolling element bearings is developed by taking probbability into account. A database is constructed from the frequency characteristics of tested bearings with various types of defects. The proposed algorithms for the automatic diagnosis of bearing defects are shown to be satisfactory through the experiments. This method can be effectively used for quality control of the rolling bearing in plants.

  • PDF

일회성 터보엔진용 구름 베어링의 저장 수명 예측에 관한 연구 (A Study on the Prediction of Storage Life of Rolling Element Bearings for the Single-use Turbo Engine)

  • 김선제;김동민;홍순호;민성기
    • 한국추진공학회지
    • /
    • 제26권6호
    • /
    • pp.43-52
    • /
    • 2022
  • 유도무기용 일회성 터보엔진은 장기간 저장 후에도 운용 신뢰성이 보장되어야 한다. 터보엔진의 운용 신뢰성에 큰 영향을 미치는 구름 베어링은 장시간 저장에 의해 궤도면 및 전동체에 산화층이 형성될 수 있으며, 이로 인해 미세 치수의 변화를 유발하여 고장이 발생할 수 있다. 본 연구에서는 실제 장기 저장된 일회성 터보엔진 베어링을 획득하고, 전동체 조도의 열화 데이터를 이용하여 저장 수명을 예측하였다. 저장 수명은 와이베이즈(Weibayes) 분석 방법과 선형 열화식의 계수를 난수로 생성하는 난수 생성 기반 분석 기법을 통해서 예측하였다. 본 연구에서는 두 가지 수명평가 방법의 결과를 상호 비교하고 이에 따른 장단점을 분석하였다. 향후, 추가적인 장기저장 시편을 확보하고, 명확한 고장 조도 기준을 수립하면 베어링의 저장 수명 예측정확도를 높일 수 있을 것이며, 터보엔진의 효율적인 정비 주기 설정에 기여할 수 있을 것이다.

Thermal Model of High-Speed Spindle Units

  • Zver, Igor-Alexeevich;Eun, In-Ung;Chung, Won-Jee;Lee, Choon-Man
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.668-678
    • /
    • 2003
  • For the purpose to facilitate development of high-speed spindle units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristics of SUs. The thermal model incorporates a model of heat generation in rolling bearings, a model of heat transfer from bearings, and models for estimation of temperature and temperature deformations of SU elements. We have carried out experimental test and made quantitative evaluation of the effect of operation conditions on friction and thermal characteristics of the SUs of grinding and turning machines of typical structures. It is found out that the operation conditions make stronger effect on SU temperatures when rpm increases. A comparison between the results of analysis and experiment proves their good mutual correspondence and allows us to recommend application of the models and software developed for design and research of high-speed SUs running on rolling bearings.

CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석 (CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings)

  • 조준현;김충현
    • Tribology and Lubricants
    • /
    • 제29권4호
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

응력해석을 통한 풍력 발전기용 피치/요 베어링 설계 검증 (Design evaluation of wind turbine pitch/yaw bearings by contact stress analysis)

  • 가재원;김재동;남용윤;임채환;박영준;방제성;이영신
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Wind turbine pitch/yaw bearings are relatively big and have different operating conditions like very heavy load to support compared with widely used industrial bearings. Once pitch/yaw bearings failed, according to their special surroundings, serious damages like higher repair costs and additional costs by stopped electricity generation are occur. Therefore, pitch/yaw bearings must be designed to have enough strength and fatigue life under actual operating conditions. In this study, with finite element analysis, it was investigated that stress distribution between rolling elements and raceway and comparatively analyzed using widely used guideline (NREL DG03). Design parameters of wind turbine pitch/yaw bearings are also analyzed, and it could be used as reference for the large bearing design field.

  • PDF