• Title/Summary/Keyword: Rolling element bearing

Search Result 70, Processing Time 0.035 seconds

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings (CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

Automatic Diagnosis of Defects in Roller Element Bearings (롤러 베어링에서의 결함의 자동진단)

  • 유정훈;윤종호;김성걸;이장무
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.353-360
    • /
    • 1995
  • A new automatic diagnostic system for predicting multiple defects in rolling element bearings is developed by taking probbability into account. A database is constructed from the frequency characteristics of tested bearings with various types of defects. The proposed algorithms for the automatic diagnosis of bearing defects are shown to be satisfactory through the experiments. This method can be effectively used for quality control of the rolling bearing in plants.

  • PDF

Fuzzy Defects Diagnosis of Rolling Element Bearings (구름 베어링의 퍼지 결함 진단에 관한 연구)

  • 양보석;전순기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.85-93
    • /
    • 1994
  • A new diagnosis method is developed in this paper, in which the fuzzy set theory is introduced to diagnose the defects of rolling element bearings. The selection of membership function and the fuzzy operation model are discussed in detail here. The system is successfully used for various defects diagnosis of rolling element bearings.

  • PDF

Higher Order Statistical Analysis of Sound-Vibration Signal in Rolling Element Bearing with defects (결함이 있는 회전요소 베어링에서 음향-진동 신호의 고차 통계해석)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.49-56
    • /
    • 1999
  • This paper present a study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skewless are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

Finite Element Analysis of a Hot Profile Ring Rolling Process of the Ball Bearing Outer Race (볼 베어링 외륜 열간형상링압연 공정의 유한요소해석)

  • Kim, Bong-Su;Choi, In-Su;Choi, Moo-Ho;Lee, Gun-Myung;Kim, Eung-Zu;Joun, Man-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.164-168
    • /
    • 2012
  • In this paper, a manufacturing process for a ball bearing outer race is studied by experiments and predictions, which is composed of four hot forging stages and the final hot or warm profile ring rolling stage. An analysis model and some assumption to simulate the profile ring rolling process is introduced. The entire process including the forging stages and ring rolling stage is simulated using a rigid-thermoviscoplastic finite element method and the predictions are compared with the experiments in terms of major dimensions, showing that they are quantitatively very close to each other.

Determination of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 결정)

  • Kim Tae-Wan;Cho Yong-Joo;Yoon Ki-Chan;Park Chang-Nam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.377-383
    • /
    • 2003
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The quasi-static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. The critical axial load and the critical shoulder height which are not affected by edge in the present shoulder height is calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

  • PDF

Study on Fuel Lubrication Performance of a High Speed Rolling Element Bearing (소형 고속 구름베어링의 연료윤활 특성 연구)

  • Kim, Ki-Tae;Kim, Sung-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.424-426
    • /
    • 2008
  • A parametric study was carried out to find the fuel lubrication performance of high speed small rolling element bearings. Both MIL-PRF-7808 turbine oil and JP-8 aircraft fuel were used as the lubricant to compare the operational characteristics. 17 mm inner diameter deep groove ball bearing and 20 mm cylindrical roller bearing were used. A high speed bearing test rig was developed and the testing was done with varying applied load, cooling air temperature, lubricant flow rate, and speed. Fuel caused more cage wear than oil for ball bearing with increasing axial load and rotational speed. The bearing temperature using fuel was lower than that using oil, and this seems to be the result of the high cooling capacity of fuel. According to various tests, the fuel lubrication is applicable for the lubrication on the main shaft bearings of expendable small gas turbines.

  • PDF

A Study on Orbital Forming Analysis of Automotive Hub Bearing using the Explicit Finite Element Method (외연적 유한요소법을 이용한 자동차 Hub Bearing의 Orbital Forming해석에 관한 연구)

  • Cho, Hyun-Jik;Koo, Jeong-Seo;Bae, Won-Rak;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, the orbital forming analysis of an automotive hub bearing was studied to predict forming performances using the explicit finite element method. To find an efficient solution technique for the orbital forming, axisymmetric finite element models and 3D solid element models were solved and numerically compared. The time scaling and mass scaling techniques were introduced to reduce the excessive computational time caused by small element size in case of the explicit finite element method. It was found from the numerical simulations on the orbital forming that the axisymmetric element models showed the similar results to the 3D solid element models in forming loads whereas the deformations at the inner race of bearing were quite different. Finally the strains at the inner race of bearing and the forming forces to the peen were measured for the same product of the numerical model by test, and were compared with the 3D solid element results. It was founded that the test results were in good agreements with the numerical ones.