• Title/Summary/Keyword: Rolling direction

Search Result 297, Processing Time 0.027 seconds

Prediction of Width-Direction Asymmetric Deformation Behavior and Its Setup Model in Plate Rolling (후판 압연공정에서 폭방향 비대칭 변형거동 예측 및 설정모델에 관한 연구)

  • Byon, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1437-1443
    • /
    • 2011
  • Thick plates produced by the rolling process are used as the basic elements of ship structures. In this paper, we present a setup model for controlling the asymmetric factors causing plate bending in the width direction during plate rolling. A series of three-dimensional finite element analyses is conducted to predict the relationship between various asymmetric factors and plate bending. The setup model is developed by performing regression on the relationship to produce linear equations with several nondimensional parameters. The setup model is verified with a pilot rolling test in which variations in thickness and temperature differences in the width direction exist. The results show that the bending curvatures predicted by the model are in fairly good agreement with the measured results for those asymmetric factors.

A Study on the Development of Hot Rolling Process for 18Cr-10Mn-0.44N2 (18Cr-10Mn-0.44N2 고질소강의 열연공정개발에 관한 연구)

  • Kim, Y.D.;Cho, J.R.;Lee, J.W.;Bae, W.B.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.296-302
    • /
    • 2011
  • The objective of this paper is to determine the effect of process parameters on the behavior of a 18Cr-10Mn-$0.44N_2$ nitrogen steel sample deformed by hot rolling. Compression tests were carried out at high temperatures to determine the flow stresses needed for a finite element(FE) analysis. The strain rate, ranging from 0.1 to $1.0s^{-1}$, significantly affected the flow stress at temperatures higher than $1,000^{\circ}C$. Non-isothermal rolling simulations and laboratory rolling tests were performed with plate specimens 14.5mm thick, 135mm wide and 226mm long. A rolling reduction of 15% per pass leading to a cumulative rolling reduction of 60% was determined as optimal. The extension ratio of 176.5% in the length direction was about 30.4 times greater than the extension ratio of 5.8% in the width direction. Isotropic properties for tensile strength, microstructure and grain size were measured after mock-up hot rolling tests. The results from the mockup tests were found to be in good agreement with those of the simulations.

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

Microstructure and Mechanical Property in Thickness Direction of a Deoxidized Low-Phosphorous Copper Sheet Processed by Two-Pass Differential Speed Rolling (2-pass 이주속압연된 인탈산동판재의 두께방향으로의 미세조직 및 기계적 특성)

  • Lee, Seong-Hee;Jang, Jun-Hyuk;Utsunomiya, Hiroshi
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.392-398
    • /
    • 2013
  • A two-pass differential speed rolling(DSR) was applied to a deoxidized low-phosphorous copper alloy sheet in order to form a homogeneous microstructure. Copper alloy with a thickness of 3 mm was rolled to 75 % reduction by two-pass rolling at $150^{\circ}C$ without lubrication at a differential speed ratio of 2.0:1. In order to introduce uniform shear strain into the copper alloy sheet, the second rolling was performed after turning the sample by $180^{\circ}$ on the transverse direction axis. Conventional rolling(CR), in which the rotating speeds of the upper roll and lower roll are identical to each other, was also performed by two-pass rolling under a total rolling reduction of 75 %, for comparison. The shear strain introduced by the conventional rolling showed positive values at positions of the upper roll side and negative values at positions of the lower roll side. However, samples processed by the DSR showed zero or positive values at all positions. {100}//ND texture was primarily developed near the surface and center of thickness for the CR, while {110}//ND texture was primarily developed for the DSR. The difference in misorientation distribution of grain boundary between the upper roll side surface and center regions was very small in the CR, while it was large in the DSR. The grain size was smallest in the upper roll side region for both the CR and the DSR. The hardness showed homogeneous distribution in the thickness direction in both CR and DSR. The average hardness was larger in CR than in DSR.

A study correspond with international standard on the standard of wheel for railway rolling stock (철도차륜용 차륜규격 국제규격 부합화 연구)

  • Lee Chan-Woo;Hur Hyun-Moo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.710-713
    • /
    • 2004
  • The domestic railroad industry 2004 April high-speed railroad commerce is the actual condition which is operated and the fact that in spite of railroad standard field many portion does not correspond in international standardize actuality. International standard correspondence propulsion direction and hereafter of railway rolling stock wheel standard it was presented from the research which it sees and the railway rolling stock wheel relation KS standard establishment by law direction it introduced.

  • PDF

Simulation of Inhomogeneous Texture through the Thickness Direction during Hot Rolling Deformation in Strip Cast Al-5wt%Mg Alloy (박판 주조된 Al-5 wt%Mg 합금의 열간압연 시 두께방향 불균일 집합조직 시뮬레이션)

  • Song, Young-Sik;Kim, Byoung-Jin;Kim, Hyoung-Wook;Kang, Seok-Bong;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.135-143
    • /
    • 2008
  • The inhomogeneous texture through the thickness direction can be developed during hot rolling deformation in aluminum alloy. In this study, the inhomogeneous texture evolution through the thickness direction during hot rolling deformation in Al-5 wt%Mg alloy produced by a new strip casting technology was measured experimentally. Macrotexture measurement was conducted using X-ray diffractometer. A finite element analysis with ABAQUS/StandardTM and rate sensitive polycrystal model were used to predict the evolution of hot rolling texture. The experimental results of Al-5 wt%Mg alloy were compared with calculated results. The shear texture components tend to be increased at the surface region of the hot-rolled specimen. It is found that triclinic sample symmetry is more accurate assumption for texture analysis and simulation in the surface region of hot-rolled aluminum alloy.

Planar (Rolling) Shear Strength of Structural Panels Using 5-point Bending Test (5점 휨하중 시험법을 사용한 구조용 판넬의 굴림전단강도)

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.425-436
    • /
    • 2018
  • This study was conducted to evaluate the planar (rolling) shear strength of OSB (oriented strand board) panels and domestic plywood through 5 point bending test method in ASTM D2718 standard. The test specimens were prepared in parallel and perpendicular direction to major axis (along the length of panels) and tested up to failure, and failure modes were also examined. From the test results, rolling shear strength were found to be $1.32{\sim}1.94N/mm^2$ in parallel to major axis, and $1.46{\sim}1.99N/mm^2$ in perpendicular to major axis respectively. Little difference was found between parallel and perpendicular direction of rolling shear strength. There were no statistically significant differences in rolling shear strength between Canadian OSB and domestic plywood in the parallel direction, and between Chilean OSB and domestic plywood in the perpendicular direction. The shear failure was observed in all tested OSB panels, whereas shear failure, glue line delamination, and bending combined with shear failure were observed in the domestic plywood.

Prediction of Three-Dimensional Strip Profile for 6-High Mill in Thin-Strip Rolling (6 단 압연기의 극박 압연공정에서 3 차원 판 형상 예측)

  • Lee, Sang-Ho;Song, Gil-Ho;Lee, Sung-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.855-861
    • /
    • 2011
  • We predict the rolled-strip profile for a 6-high mill using thin rolling theory and a numerical model. In the numerical model, we calculate the distributions of the contact pressures between the rolls and the rolling pressure between the strip and the work roll in the transverse direction using the geometric structure of the 6-high mill and the boundary conditions. We determine the distribution of the rolling pressure in the rolling direction via a thin-foil rolling model using Fleck's theory. We calculate the three-dimensional elastic deformation of the work roll using the pressures of the width and rolling directions. We then obtain the three-dimensional strip profile via the elastic deformation of the work roll during the rolling process. The profile is verified by a thin cold-rolling test and FE simulation.

Evolution of strain states during Cross-roll rolling in AA 5052 sheet for varying cross-roll angle using FEM (유한요소 해석을 통한 AA 5052 판재의 Cross-roll 압연시 Cross angle에 따른 변형을 상태의 변화)

  • Kim, S.H.;Kang, H.G.;Kim, D.G.;Lee, J.S.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.95-98
    • /
    • 2008
  • In the present work, cross-roil rolling was rallied out using a rolling mill in which the roll axes are tilted by $5^{\circ},\;7.5^{\circ},\;10^{\circ}$ towards the transverse direction of the roiled sample. The evolution of strain states during cross-roll rolling was investigated by three-dimensional finite element method (FEM) simulation. Parallel to cross-roll rolling, normal-rolling using a conventional rolling mill was also carried out in the same rolling condition for clarifying the effect of cross-roll rolling. It turned out that three shear rate components were all introduced to the rolled sample by the cross-roll rolling process, while only one shear rate component operated during normal-rolling.

  • PDF

Evolution of strain states during Cross-roll rolling in AA 5052 sheet using Finite Element Method (유한요소 해석을 통한 AA 5052 판재의 Cross-roll 압연시 변형율 상태의 변화)

  • Kim, S.H.;Kim, D.G.;Park, E.S.;Lee, J.S.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.404-407
    • /
    • 2008
  • In the present work, cross-roll rolling was carried out using a rolling mill in which the roll axis is tilted by $7.5^{\circ}$ towards the transverse direction of the rolled sample. The evolution of strain states during cross-roll rolling was investigated by three-dimensional finite element method (FEM) simulation. Parallel to cross-roll rolling, normal-rolling using a conventional rolling mill was also carried out in the same rolling condition for clarifying the effect of cross-roll rolling. It turned out that three shear rate components were all introduced to the rolled sample by the cross-roll rolling process, while only one shear rate component operated during normal-rolling.

  • PDF