• 제목/요약/키워드: Rolling Wave

검색결과 122건 처리시간 0.022초

가공 온도가 다른 STS316L의 탄성파 특성 (Elastic Wave Properties of STS316L with Different Rolling Temperature)

  • 탁영준;구경희;이금화;남기우
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.325-331
    • /
    • 2022
  • In this study, austenitic 316L stainless steel was rolled at three different temperatures (100℃, -50℃, -196℃) at five rolling degree (0, 16, 33, 50, 66 and 80%). The rolled specimen was examined for micro structure, and the volume fraction and mechanical properties were evaluated. In particular, the rolling specimen detected the elastic wave generated in tensile and investigated the relationship between the rolling degree and the dominant frequency. As the rolling degree increased, austenite decreased and martensite increased. The volume fraction of martensite more increased at lower temperatures, but increased rapidly at the rolling degree of 50% of all rolling temperature. Tensile strength increased rapidly with the increase of the rolling degree, and was larger at lower temperatures. The elongation decreased sharply to the rolling degree of 33%, but decreased gently thereafter. The dominant frequency highly appeared as the volume fraction of martensite increased, but the dominant frequency was higher at the low temperature rolling temperature. A similar trend was also observed in the relationship between tensile strength and dominant frequency.

해상상태 3의 파고에 따른 모바일 하버 크레인의 롤링 동응답 해석 (Rolling Dynamic Response Analysis of Mobile Harbor Crane by Sea State 3 Wave Excitation)

  • 한기철;황순옥;최은호;조진래;임오강
    • 한국전산구조공학회논문집
    • /
    • 제23권5호
    • /
    • pp.493-499
    • /
    • 2010
  • 해상부유식 항만부두인 모바일 하버에는 일반 지상설치식 크레인과는 다른 구조를 가진 크레인이 설치되어 있다. 그리고 상부에 설치되어 있는 크레인은 파고에 따른 모바일 하버 전체의 동적 안정성에 지대한 영향을 미친다. 본 연구는 해상상태 3의 파고에 따른 모바일 하버용 크레인의 롤링 동응답 해석에 관한 내용으로서, 이론과 수치해석 기법으로 구성된 2단계 해석절차를 적용하였다. 선형파고이론에 따라 강체로 가정한 모바일 하버의 롤링응답을 이론적으로 계산하고, 모바일하버 본체의 롤링에 따른 탄성체 크레인의 롤링 동특성을 유한요소해석으로 분석하였다. 모바일 하버 본체와 직접 접하는 파고의 동적 연계효과는 부가질량 기법으로 반영하였다.

수조 실험에 의한 게 통발 어선의 복원성에 관한 연구 (A study on the stability of a crab trap fishing boat with water tank experiment)

  • 이아름;강일권;조효제
    • 수산해양기술연구
    • /
    • 제45권4호
    • /
    • pp.267-275
    • /
    • 2009
  • According to the recent statistics of marine casualties in Korea, fishing boats are more likely to be ended in the casualties, and small fishing boats especially cause much more accidents in sinking and capsizing than any other big vessels. These casualties were mainly produced from the ignorance on the lack of own ship stability. From this view, this study aims to analyze the characteristics of stability on the crab trap fishing boat receiving transverse wave by means of carrying out the water tank test. The rolling angle of the model ship was affected largely with the displacement and the wave period of it, and the trends were shown that the magnitude of the angle was proportional to the displacement, but inversely to the wave period. And the wave height had effect on the rolling angle just in the specific range of the wave period. The force of steady wind didn't have influence on the rolling variation significantly.

Coupled Motion Simulation of the Mobile Harbor and Anti-Rolling Devices in Waves

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun;Lew, Jae-Moon;Moon, Seok-Joon;Chung, Tae-Young
    • 한국항해항만학회지
    • /
    • 제34권4호
    • /
    • pp.271-279
    • /
    • 2010
  • The Mobile Harbor(MH) is a new transportation platform that can load and unload containers to and from very large container ships in the sea. This loading and unloading by crane can be performed with only very small movements of the MH in waves because MH is operated outside of the harbor. For this reason, an anti-rolling tank(ART) and an active mass driving system(AMD) were designed to reduce MH's roll motion, especially at the natural frequency of MH. In the conceptual design stage, it is difficult to confirm the design result of theses anti-rolling devices without modeling and simulation tools. Therefore, the coupled MH and anti-rolling devices' dynamic equations in waves were derived and a simulation program that can analyze the roll reduction performance in various conditions, such as sea state, wave direction, and so on, was developed. The coupled equations are constructed as an eight degrees of freedom (DOF) motion that consists of MH's six DOF dynamics and the ART's and AMD's control variables. In order to conveniently include the ART's and AMD's control dynamics in the time domain, MH's radiated wave force was described by an impulse response function derived by the damping coefficient obtained in the frequency domain, and wave exciting forces such as Froude-Krylov force and diffraction force and nonlinear buoyancy were calculated at every simulation time interval. Finally, the roll reduction performances of the designed anti-rolling devices were successfully assessed in the various loading and wave conditions by using a developed simulation program.

자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션 (Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves)

  • 윤현규;이경중;이창민
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.285-290
    • /
    • 2004
  • 파도에 의한 힘과 모멘트는 운항하는 선박에 운동을 발생시킨다. 이러한 운동은 승무원의 작업 능률 저하, 화물의 안전 및 승선감 등에 영향을 주게 되어 안전 운항 저해 요소가 되므로 파도에 의한 운동이 큰 선박들은 자세제어장비(anti-rolling devices)의 장착이 요구된다. 본 연구에서는 수ㆍ능동의 이동질량 안정기(moving weight stabilizer), 감요탱크(anti-rolling tank), 핀 스태빌라이저(fin stabilizer)와 같은 자세제어장비의 동적 거동을 수학적으로 모델링 하였다. 기존에는 자세제어장비의 운동을 선박의 횡동요에만 고려한 반면, 본 연구에서는 선박의 6자유도 운동을 모두 고려하여 연성 운동방정식을 정립하였다. 마지막으로 자세제어장비를 장착한 선박의 파중 운동 계산 프로그램을 작성하여 시뮬레이션을 수행하였다.

  • PDF

A Study on an Anti-Rolling System Design of a Ship with the Flaps

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1312-1318
    • /
    • 2004
  • Roll stabilization systems for ships are employed to increase comfort for passengers, maintain full working capabilities for members of the crew and prevent cargo damage. In this paper, we have investigated the usefulness of active stabilizing system to reduce ship rolling under disturbances, using varied reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps as the actuator are installed on the stern to reject rolling motion induced by disturbances such as wave. The action induced by flaps depends on power of disturbances and can take the ship balance. Especially, in this study we define the system parameters under the given system structure and design the controller to evaluate the usefulness of the proposed system.

Rolling Motion Spectrum 에 의한 해난 발생의 원인분석에 관한 연구 (A Study about Analysis of Cause of several Capsized Sea Accidents by Rolling Motion Spectrum)

  • 윤점동;이동섭
    • 한국항해학회지
    • /
    • 제13권2호
    • /
    • pp.23-36
    • /
    • 1989
  • Marine casualities in the high sea are mainly classified into the breakage of hull and capsize , of which the latter occurs frequently to a small craft and container vessels by extreme rolling. The aim of this study is to develop shiphandling techniques for the prevention of ship's large rolling by way of evaluating dangerous degree of rolling in heavy weather. In this study, rolling motion is analized by using statistical method as follow : (1) 8 sample ships is presented for calculation. (2) Analized sea state are Beaufort scale 7 and 10 (wind velocity 30kts and 50kts respectively) and significant wave height is put as 5.2m and 11.2m. (3) The formula recommended by International Towing Tank Conference (ITTC) is used to calculated the wave spectrum. The results of this study are as follow : The results of this study are as follow : (1) Most of the vessels with beam of 20 meters or less was found to be capized in the waves abeam under the sea condition of Bearfort scale7(30kts). (2) For the vessels range 20m to 30m was found safe under the sea conditions of Bearfort scale 7(30kts) and imminent danger under the sea condition of Beaufort scale 11(50kts). (3) It is proved that any vessel could be capsized by heavy rolling regardless of vessel's size whenever the motion is synchronized with waves abeam. This study concludes that the navigator, especially at night , must anticipate the exact wave direction, referring to the wether report and coastaline, not to lay the vessel in the serial wave abeam.

  • PDF

파형 구름 볼 감속기의 기구해석 및 설계 (Kinematic Analysis and Design of Wave Rolling Ball Reducer)

  • 김완두;유형태;한형석;최병철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.289-295
    • /
    • 1999
  • A new conceptual wave rolling ball reducer was proposed and investigated. The main components of the reducer were a eccentric input shaft and bearings, followers with balls, a flange, and a outer ring with waved groove. Followers moved along the holes of the flange according to the rotation of the shaft. And the balls installed in tips of followers were rolled with the waved groove of outer ring. When the shaft was rotated as one revolution and the outer ring was fixed, the flange was rotated as one wave. The kinematic analysis of the reducer carried out. The forces of each components were estimated, and the main design parameters were investigated. The design program using Visual C++ and Auto Lisp to determine the design parameters and to generate the drawing sheet.

  • PDF

파랑상태에 있는 실린더 구조물 주위의 PIV유동 해석 (PIV Analysis on the Flows around a Cylinder under Rolling Wave)

  • 조효제;도덕희;이언주
    • 한국가시화정보학회지
    • /
    • 제9권3호
    • /
    • pp.51-58
    • /
    • 2011
  • The purpose of the study is to provide a foundation in predicting a maximum wave force when the ocean structure is laid out under breaking wave. Experiments were conducted with a down-scaled cylindrical model installed in a wave generating water channel. Maximum wave slopes were changed in regular wave condition by the wave breaker in the water channel. Cylinder's diameters were changed to 0.1m and 0.05m, respectively. Using the PIV results qualitative analyses were performed based upon the previous knowledge.

A Study on the Method of Safe Shiphandling in Violently Rough Sea by Typoon or Hurricane

  • Lee, Chun-Ki
    • 한국항해항만학회지
    • /
    • 제34권2호
    • /
    • pp.123-129
    • /
    • 2010
  • The object of this study is to develop the method of safe conducting of a vessel through stormy sea when we encounter typoon or hurricane on ocean. The scope of investigation in this paper will be limited to safe maneuvering related only with rolling motions of a vessel. The processes of investigations are as follows; Firstly, we decide a CPA(Closest Point of Approach) with the center of the storm and decide significant wave height($H_{1/3}$) by SMB method and then calculate wave height of the highest of 1000 waves($H_{1/1000}$) and other data. Secondly, we make mathematical model of rolling motions of the vessel on the stormy sea and calculate the biggest rolling angle of the vessel and etc. Thirdly, we decide the most safe maneuvering method to ride out the stormy sea. By the above mentioned method we are able to calculate the status of the stormy sea and ships motions to be encountered and ride out safely through violently rough sea.