• Title/Summary/Keyword: Rolling System

Search Result 1,075, Processing Time 0.042 seconds

Paper Preparation for The $5^{th}$ Rolling Conference 'Development of new emulsification system rolling oil' (신규 유화 System 압연유의 개발)

  • MINABE TATSURO
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.268-276
    • /
    • 2004
  • As recent demands for cold rolling oil for steel, not only better lubricity, but cost reduction and improvement of work environment are increasingly required. In order to respond these demands, Nihon Parkerizing has developed rolling oils with completely new emulsification system. Comparing with conventional oils, the new system indicates better iron fine removability to maintain oil concentration, due to better iron fine dispersion, and superior mill stain resistance by spray stain test.

  • PDF

A Study on the Design of the Anti-Rolling Control System for a Ship (선박의 횡동용 방지 장치 개발에 관한 연구)

  • Kim, Young-Bok;Byun, Jung-Hoan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.438-444
    • /
    • 2001
  • In this paper, an actively controlled anti-rolling system is considered to reduced the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and the actuator is connected between the auxiliary mass and the ship. The actuator reacts against the auxiliary mass, applying inertial control corves to the ship to reduce the rolling motion in the desired manner. in this paper, we apply the PID controller to design the anit-rolling control system for the controlled hip. And the experimental result shows that the desirable control performance is achieved.

  • PDF

An Experimental Study on the Development of the Anti-Rolling Control System for a Ship (선체 횡동요 방지 장치 개발을 위한 실험적 연구)

  • 김영복;변정환;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF

An Experimental Study on the System Identification and Anti-Rolling System Design for a Ship with Flaps (선미측에 플랩을 갖는 선박의 동특성 규명과 횡동요 제어계 설계)

  • 김영복;강귀봉;채규훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • We have investigated the usefulness of an active stabilizing system to reduce ship rolling under disturbances, using varying reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps, as the actuator, are installed on the stern, in order to reject the rolling motion induced by disturbances, such as waves. The action induced by the flaps, which is dependent upon the power of the disturbances, can keep the ship in balance. In this study, we define the system parameters under the given system structure, using spectral analysis and experimental studies. Based on this information, we design the controller to evaluate the usefulness of the proposed system.

A Study on an Anti-Rolling System Design of a Ship with the Flaps

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1312-1318
    • /
    • 2004
  • Roll stabilization systems for ships are employed to increase comfort for passengers, maintain full working capabilities for members of the crew and prevent cargo damage. In this paper, we have investigated the usefulness of active stabilizing system to reduce ship rolling under disturbances, using varied reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps as the actuator are installed on the stern to reject rolling motion induced by disturbances such as wave. The action induced by flaps depends on power of disturbances and can take the ship balance. Especially, in this study we define the system parameters under the given system structure and design the controller to evaluate the usefulness of the proposed system.

Development of Anti-Rolling Demo System for Mobile Harbor Using Maglev Type AMD (자기부상방식 AMD를 이용한 모바일 하버용 횡동요 저감 데모 장비의 개발)

  • Park, Cheol-Hoon;Ham, Sang-Yong;Kim, Byung-In;Lee, Sung-Whee;Park, Hee-Chang;Cho, Han-Wook;Moon, Seok-Jun;Chung, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2011
  • Mobile harbor which is a novel concept of ocean transportation to bring the containers from the cargo ship waiting on the ocean away is being focused now. To provide the mobile harbor with the stable loading/unloading condition, it is necessary to develop the oscillation mitigation technologies such as anti-rolling system. Anti-rolling system using AMD(Active Mass Driving) has merits that it can handle the disturbances more actively and mitigate the rolling oscillation faster than other type anti-rolling system. However, rack-and-pinion type AMD has problems such as big friction noise from gears and motor, wear and tear, and continuous maintenance. In this paper, novel anti-rolling system using Maglev type AMD for mobile harbor is suggested in order to resolve the problems caused by the friction. This novel anti-rolling system doesn't make any friction because it supports the moving mass by using magnetic levitation force and moves it by using propulsion force from the linear motor. The demo system of the novel anti-rolling system using maglev type AMD has been developed in order to investigate its feasibility. This paper presents the procedures and results of development of this demo system.

Analysis of Spatial Control System in Cold-Rolling thru Web-based Remote Monitoring (Web기반의 원격모니터링을 통한 냉간 압연의 공간제어 시스템 해석)

  • 최승현;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.183-183
    • /
    • 2000
  • In this paper, web-based remote monitoring for cold-rolling system is developed and the analysis of spatial control system is performed. The remote monitoring system is able to grasp the status of cold-rolling system regardless of time and locations. We analyzed spatial control algorithm of the system with the collected data. The usefulness of spatial control system is shown by simulation studies.

  • PDF

An Experimental Study on the Rolling Motion Control of a Ship Based on LMI Approach (LMI를 이용한 선박 횡동요 제어에 관한 실험적 연구)

  • 채규훈;김영복
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-66
    • /
    • 2003
  • In this paper, an actively controlled anti-rolling system is considered, in order to reduce the rolling motion of a ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and an actuator is connected between the auxiliary mass and the ship. The actuator reacts the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we introduce LMI based H$_{\infty}$ control approach to design the anti-rolling control system for the controlled ship. And the experimental results show that the desirable control performance can be achieved.

Seismic response of spring-damper-rolling systems with concave friction distribution

  • Wei, Biao;Wang, Peng;He, Xuhui;Jiang, Lizhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • The uneven distribution of rolling friction coefficient may lead to great uncertainty in the structural seismic isolation performance. This paper attempts to improve the isolation performance of a spring-damper-rolling isolation system by artificially making the uneven friction distribution to be concave. The rolling friction coefficient gradually increases when the isolator rolls away from the original position during an earthquake. After the spring-damper-rolling isolation system under different ground motions was calculated by a numerical analysis method, the system obtained more regular results than that of random uneven friction distributions. Results shows that the concave friction distribution can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the spring-damper-rolling isolation system in comparison with the random uneven distribution of rolling friction coefficient, and always lead to a relatively acceptable isolation state even if the actual earthquake significantly differs from the design earthquake.

Development of a framework for engineering RAMS into rolling stock through life cycle in the operator perspective (철도차량의 개발 및 운용을 위한 RAMS 관리 시스템 개발)

  • Park, Mun-Gyu;An, Min
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2179-2194
    • /
    • 2010
  • RAMS is becoming increasingly important in the decision making process for the rolling stock projects in order to improve competitiveness by reducing system life cycle cost while improving reliability, availability, maintainability and safety. In order to apply and manage RAMS of rolling stock systems effectively in the operator perspective, it is essential to integrate and control RAMS systematically from the early stage of rolling stock projects. RAMS management is to implement a RAMS system into rolling stock projects in terms of a rolling stock operator, which presents the strategic directions of RAMS policy, objectives, requirements, control, analysis, measurement and improvement throughout life cycle of rolling stock projects. This article presents a new framework of RAMS management that provides an effective and efficient way for managing RAMS in rolling stock systems in the railway industry.

  • PDF