• Title/Summary/Keyword: Rolling Pass Schedule

Search Result 17, Processing Time 0.028 seconds

Process Design of Multi-Pass Shape Rolling for Manufacturing Piston Ring Wire (피스톤 링 제조용 선재의 다단 형상 압연공정 설계)

  • Kim, N.J.;Lee, K.H.;Lim, S.H.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Multi-pass shape rolling is performed to produce long products of arbitrary cross-sectional shapes. In the past, the multi-pass shape rolling process has been designed by the trial and error method or the experience of experts based on the empirical approach. Particularly, the design of roll caliber in shape rolling is important to improve product quality and dimensional accuracy. In this paper, the caliber design and pass schedule of multi-pass shape rolling were proposed for manufacturing piston ring wire. In order to design roll caliber, major shape parameter and dimension was determined by analysis of various caliber design. FE-simulation was conducted to verify effectiveness of proposed process design. At first, forming simulation was performed to predict shape of the product. Then, fracture of the wire was evaluated by critical damage value using normalized Cockcroft-Latham criteria. The experiment was carried out and the results are within the allowable tolerance.

Design of Rolling Path Schedule for Refinement of Austenite Grain (오스테나이트 결정립 미세화를 위한 후판 압연 패스 스케줄의 설계)

  • Hong, Chang-Pyo;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1844-1853
    • /
    • 2001
  • In the present investigation, it was attempted to design the rolling pass schedule fur a clean steel of 0.1C-1.5Mn-0.25Si with the objective of the austenite grain refinement. As the method of approach, a coupled mathematical modeling technique was proposed which consists of a recrystallization model and a flow stress modes. The validity of the coupled model was examined through comparison with results of continuous and discontinuous compression tests at various temperatures, strains and strain rates. The coupled model was incorporated with the finite element method to set up a systematic design methodology far the rolling path schedule for austenite grain refinement. Two path schedules were obtained and discussed in the paper with regard to rolling path time, average grain size, grain size deviation in thickness, etc.

Design of Rolling Pass Schedule in Copper Thin Foil Cold Rolling According to Roll Crown of 6 High Mill (6단 압연롤 크라운을 고려한 동극박 냉간 압연 패스스케줄 설계)

  • Lee, Sang-Ho;Ok, Soon-Young;Hwang, In-Youb;Hwang, Won-Jea;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.66-72
    • /
    • 2008
  • During the plate and foil cold rolling process, considerable values of the force of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation legion. Rolled copper foils should be characterized by a good quality and light dimensional tolerances. Because of automation that is commonly implemented in flat product rolling mills, these products should meet the requirements of tightened tolerances, particularly strip thickness, and feature the greatest possible flatness. The shape of the roll gap is influenced by the elastic deformation of rolls parts of the rolling process affecter of the pressure force. However, to control roll deformation should be difficult. Because the foil thickness is very thin and the permissible deviations in the thickness of foil are small. In this paper, FE-simulation of roll deformation in thin foil cold roiling process is presented.

Design of Rolling Pass Schedule utilizing Grain Refinement by Strain Accumulation (변형률누적에 의한 결정립미세화를 응용한 압연 패스 스케줄의 설계)

  • Park, Jong-Jin;Lee, Sang-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.464-471
    • /
    • 2003
  • Among various methods to acquire high strength in plain carbon steel, the mettled of grain refinement by controlling thermo-mechanical processing parameters has gained a great attention if steel rolling industries. In the present study, three different rolling pass schedules are proposed to obtain fine grains which are based on combined results of recrystallization modelling, finite element analysis and experiment. Since meta-dynamic or dynamic recrystallization has been found to be very effective in producing fine grains, reduction ratio and interpass time in the proposed rolling pass schedules were determined in order to invoke such recrystallization as often as possible.

Development of a Finishing-Mill Set Up Program for Calculating Pass Schedule In Mini Process (미니밀 마무리압연기의 Pass Schedule 설정 프로그램 개발)

  • 이호국;박해두;최갑춘
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.101-109
    • /
    • 1996
  • Mini-mill process which is one of the new steel -marking technologies to be able to produce the hot rolled coils by thin slab caster of ISP(In-Line Strip Production) type, will be completed in the Kwangyang Steel Works of POSCO in August, 1996, SEt-Up Model of finishing mill which consists of 5 stands is the most basic and essential in mini-mill plant. Therefore, the simulation program of Finishing-mill Set-Up model were developed in this research , using new temeprature prediction model, roll gap model and rolling physical model. Using the developed FSU program , pass schedules to produce the strips with target strip thickness of 1.8mm, 2.0mm, 2.3mm, 2.7mm an d3.0mm were also determined respectively.

  • PDF

A Numerical Analysis of H Shape Rolling (H 형강압연의 수치해석)

  • Park, Jong-Jin;Jeong, Nak-Joon;Kim, Jae-Joo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.375-389
    • /
    • 1995
  • In H shape rolling, accurate predictions of deformation and temperature distribution in a billet are quite important because they are the main factors in determining roll calibers and roll pass schedules. Many researches have been performed to achieve the predictions, but most of them are limited to single pass or isothermal assumptions. In the present investigation, it is attempted to develop a method to predict the deformation and temperature distributions which is applicable to a complete rolling process that usually consists of several rollings under different rolls for a period of time. The method works by coupling two analyses : one is an approximate analysis for temperature distribution prediction and the other is the slab-FEM hybrid analysis for deformation prediction. The method is applied to analyze a "H" shape rolling process consisting of nine passes under four different rolls. In the present paper, basic ideas of the method are presented. Also, shapes of cross sections, strain and temperature distributions, roll separating force and roll torque predicted by the method are discussed.

  • PDF

Forged Product Characteristic and Cold Rolling Simulation for High-Nitrogen Stainless Steel (HNS) (TP304계 고질소 스테인레스강의 단조특성과 냉간압연 모사)

  • Lee, M.R.;Lee, J.W.;Kim, B.K.;Kim, Y.D.;Shin, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.310-313
    • /
    • 2009
  • Several high nitrogen stainless steel ingots(100kg) were fabricated with changing Ni and $[N]_2$ contents by Pressurized Vacuum Induction Melting(P_VIM). After free forging process, chemical compositions, microstructure and mechanical properties were estimated. Hardness was increased with the increase of $[N]_2$ content. Furthermore, microstructure including a lot of tempering twins was observed with optical microscope. Mechanical properties were estimated as function of solution treatment temperature and cooling method(air/water) under duration time of 1 hr on sample that were fabricated with Ni content under the atmospheric $[N]_2$ pressure. At solution treatment range of $1050{\sim}1100^{\circ}C$, hardness was decreased with the increase of solution temperature and there were little discrepancy of microstructure and hardness with cooling method. Computer simulation was carried out in order to inspect pass schedule in cold rolling process. When the condition of simulation was roll speed of 2.5mpm, rolling rate $15{\sim}17%$ per pass, it was ascertained that the formation such as deformation by sticking and lamellar sliver etc. was restricted from a simulation.

  • PDF