• Title/Summary/Keyword: Roll Profile

Search Result 125, Processing Time 0.023 seconds

The development of FE-based on-line model for the precise prediction of work roll thermal profile in hot strip rolling (열간 압연 시 워크 롤의 열 변형 정밀 예측을 위한 유한요소법 기반의 온라인 모델 개발)

  • Choi J. W.;Huang H. D.;Lee J. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.329-335
    • /
    • 2004
  • An, FE-based, on-line model is presented for the rapid and precise prediction of roll thermal profile in hot strip rolling. The validity of the model is demonstrated through comparison with FE-based off-line model which was verified by measurements. Also demonstrated is its capability of reflecting the effect of diverse process variables.

  • PDF

Establishment of Initial Work Roll Crown in Finishing Plate Mill (후판 압연에서 작업롤 초기 크라운 설정)

  • 김종택;서재형;정병완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.499-504
    • /
    • 1993
  • To find a way for establishing work roll initial crown according to roll conditions, computer simulation for predicting plate crown in plate mill is done and effects of roll conditions on plate crown is analysed. Roll gap profile and plate crown are measured to be compared to the calculated values. As a result,a regression equation to establish work roll initial crown according to roll cooditions such as backup roll diameter, backup roll crown and work roll crown is obtained.

  • PDF

Analysis of edge drop and development of numerical formula for edge drop control of cold rolled sheet (냉연판의 엣지드롭 해석 및 제어용 수식모델 개발)

  • Song, Gil-Ho;Park, Hae-Du;Jin, Cheol-Je;Sin, Seong-Gap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.723-730
    • /
    • 1998
  • With the introduction of edge drop control system in Tandem Cold Rolling Mill, it is necessary to develop te numerical expression for the set-up and edge drop automatic control of cold rolled sheet. As a first step we developed a simulation program which predicts profile and the amounts of edge drop at the delivery side of each stand by using roll deformation anlysis with the slit roll model. And by using the program the effect of various rolling conditions on edge drop was investigated. As a result the relations were obtained between the amounts of edge drop and rolling conditions. Based on above relations, the numerical expression was developed for the set-up and automatic control of edge drop by multi-regression of simulation results for the variation of edge drop amount with each rolling condition.

Decision of Optimum Grinding Condition by Pass Schedule Change (열간압연 스케줄변경에 따른 최적연삭조건 결정)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.7-13
    • /
    • 2008
  • It is important to prevent roll failure in hot rolling process for reducing maintenance cost and production loss. The relationship between rolling pass schedule and the work roll wear profile will be presented. The roll wear pattern is related with roll catastrophic failure. The irregular and deep roll wear pattern should be removed by On-line Roll Grinder(ORG) for roll failure prevention. In this study, a computer roll wear prediction model under real process working condition is developed and evaluated with hot rolling pass schedule. The method of building wear calculation functions for center portion abrasion and marginal abrasion respectively was used to develop a work roll wear prediction mathematical model. The three type rolling schedule are evaluated by wear prediction model. The optimum roll grinding methods is suggested for schedule tree rolling technique.

Temperature profile analysis for HSS Roll in Hot Strip Mill (열간압연 롤의 온도 해석 결과)

  • 이명재;류재화;이희봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.242-251
    • /
    • 1999
  • The temperature distribution over the work roll length was estimated by solving a 2-dimensional heat transfer equation based on the rolling conditions and the thermal boundary conditions. In order to solve the governing equation, a finite volume method was employed. In the rolling conditions, the strip temperature, the contact time between roll and strip, the roll speed, the strip thickness, the rolling force and the rolling and idling time were used as input data. In order to verify the accuracy of temperature estimation, roll surface temperatures were measured in the roll shop. The measured temperatures showed a good correlation with the calculated ones.

  • PDF

Finite Element Analysis of Externally Round Grooved Profile Ring Rolling Process (외부에 둥근 흠이 있는 형상환상압연공정의 유한요소해석)

  • 김광희;김병탁;석한길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.164-167
    • /
    • 2003
  • Profile ring rolling process is simulated by using the general purpose commercial finite element analysis software MSC.Superform Because the deforming region is restricted to the vicinity of the roll gap, only a ring segment spanning the roll gap is analysed in order to save computation time and cost. A profile ring with an external round groove is chosen as an example to be analysed. The rolls with and without groove were analysed to compare the amount of side spread. It is found that the grooves in the rolls reduce the amount of side spread.

  • PDF

Technology of profile and shape control in the 6-high Tandem cold Rolling Mill (연속 6단 냉간압연기에서 Profile 및 형상제어 압연기술)

  • 박해두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.142-149
    • /
    • 1999
  • Strip profile and shape control is one of the most important technologies in cold mill, especially for ultra-thin and wide cold strip. The 6-high mills, both of HCMW and UCMW mill, are known to be very effective for the shape controllability. The optimized values of these factors for set-up scheduling were analyzed and found that excellent strip control would be possible by controlling the combination of the influencing factors according to hot coil profile. The important considerations for operation were discussed for individual stand.

  • PDF

Development on Steel Pipe for Hydroforming by Roll Forming Analysis (롤 성형 해석을 통한 하이드로포밍 전용 강관 개발)

  • 이봉열;조종래;문영훈;송병호;박중호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.229-232
    • /
    • 2003
  • In the roll forming process, a sheet or strip of metal is continuously and progressively formed into a desired cross-sectional profile by feeding it through a series of forming roll. Accordingly, it is important to maintain the material properties of the initial sheet and deform uniformly during the roll forming. The roll forming process was estimated in consideration of some factors such as material properties, strip thickness, roll diameter, roll velocity, and the deformation of the material that influence the forming length. The hydroforming technology has been recognized as a new technique in manufacturing industry, especially in automotive industry. The formed pipe in used in hydroforming process is manufactured by the roll forming. The formability during hydroforming is very sensitive to the state of pipes which are made by roll forming. Particularly the amount of hardening during roll forming affects the formability. Therefore, it is necessary to design the optimum roll flower to reduce the local hardening. In this paper, optimum roll flower which has uniform strain distribution through sheet width was obtained by comparing strain distribution in various roll flower. Finite element analysis(FEA) is performed to estimate the strain distribution related to hardening by roll forming. A numerical analysis is carried out by SHAPE-RF.

  • PDF

Development of Form Rolling Technology for High Precision Worm Using the Rack Dies of Counter Flow Type (Counter Flow 방식의 랙 다이를 이용한 고정 밀도 Worm 전조기술 개발)

  • Ko Dae-Cheol;Lee Jung-Min;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.57-64
    • /
    • 2004
  • The objective of this study is to suggest the form rolling technology to produce high precision worm on the base of three dimensional finite element simulation and experiment. It is important to determine the initial workpiece diameter in form rolling because it affects the quality of tooth profile. The calculation method of the initial workpiece diameter in form rolling is suggested and it is verified by finite element simulation. The form rolling processes of worm shaft used as automotive part using both the rack dies of counter flow type and the roll dies are considered and simulated with the same numerical model as actual process by the commercial finite element code, BEFORM-3D. Deformation modes of workpiece between the form rolling by the rack dies of counter flow type and the roll dies are investigated from the result of simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The surface roughness, the straightness and the profile of worm are measured precisely using the worm shafts obtained from experiment. The results of simulation and experiment in this study show that the form rolling process of worn shaft using the rack dies is decidedly superior to that using roll dies from the aspect of the precision of worm such as the surface roughness, the straightness and the profile of worm.

Development of Manufacturing Technology for Center Floor Cross Member with Roll Forming Process (롤 포밍 공법을 이용한 고강도 차체 부품 제작 기술 개발)

  • Kim, D.K.;Park, S.E.;Cho, K.R.;Lee, K.H.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.297-300
    • /
    • 2009
  • The roll forming process is often used to manufacture long, thin-walled products such as a pipe. The final cross-section is a comparatively simple open-channel, a closed tube section or a complex profile with several bends. In recent years, that process is often applied to the bumper beam in the automotive industries. In this study, a optimal Center Floor Cross Member manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle, and also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF