• Title/Summary/Keyword: Roll Process

Search Result 892, Processing Time 0.035 seconds

New FE On-line Model (실시간 압연하중 및 압연동력 예측 모델의 개선)

  • 김영환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.52-55
    • /
    • 2000
  • Investigated via a series of finite element process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the strip in hot strip rolling. Then on the basis of these parameters an on-line model is derived for the precise prediction of roll and roll power. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

Smart Roll Forming Based on Real-Time Process Data (실시간 공정데이터 기반의 스마트 롤포밍에 관한 연구)

  • Son, Jae-Hwan;Cho, Dong-Hyun;Kim, Chul-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.45-51
    • /
    • 2018
  • Roll forming refers to the production of long plate-molded products, such as panels, pipes, tubes, channels, and frames, by continuously causing the bending deformation to thin plates using rotating rolls. As the roll forming method has advantages in terms of mass production because of its excellent productivity, the size of the roll forming industry has been continuously increasing and the roll forming method is increasingly being used in diverse industrial fields as a very important processing method. Furthermore, as the roll forming method mainly depends on the continuous bending deformation of the plate materials, the time and the cost of the heterogeneous materials developed in the process are relatively large when considered from the viewpoint of plastic working because many processes are continuously implemented. The existing studies on roll forming manufacturing have reported the loss of large amounts of time and materials when the raw materials or product types were changed; further, they have stated that the use of this method can hardly guarantee the uniformity of the formed shapes and the consistency in terms of size and cannot detect all the defects occurring during the mass production and related to the dimensions. Therefore, in this research, a real-time process data-based smart roll forming method that can be applied to multiple products was studied. As a result, a roll forming system was implemented that remembers and automatically sets the changes in the finely adjusted values of the supplied quantities of individual heterogeneous materials so that the equipment setting changing time for heterogeneous material replacements or changes in the products being produced can be shortened. It also secures the uniformity of the products so that more competitive and precise slide-rail products can be mass-produced with improvements in the quality, price, and productivity of the products.

Fundamental Study on the Development of a New Incremental Roll Forming Process for Structural Pipe Manufacturing (구조용 파이프 생산을 위한 새로운 점진적 롤 성형 공정 개발에 관한 기초 연구)

  • Son, Jong Youn;Yoon, Hee Seok;Park, Won Kyun;Shim, Do Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • Structural pipe frames are usually manufactured by complex processes, in which a straight pipe with an arbitrary cross-section is prepared via a roll-forming process and then fabricated into three-dimensional shapes by a secondary process. These conventional processes have low productivity. Recently, the inefficiency of the conventional processes has created the need to develop new forming technologies. In this study, a new incremental roll-forming process is proposed. The study is aimed at verifying the feasibility of the proposed process and investigating the fundamental process parameters using finite-element simulations. The result of the simulation demonstrates that the proposed process can be used effectively for cold fabrication of various shapes of structural pipes. In addition, the result of the investigation of parameters shows that the forming amount, number of roll sets, and distance between roll sets are significant factors to be considered in resolving dimensional errors of the product and improving its quality.

Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process (고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발)

  • Son, Hee-Jin;Kim, Sung-Yuk;Oh, Beom-Seok;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.

Development of an On-Line Model for the Prediction of Roll Force and Roll Power in Roughing Mill by FEM (유한요소법을 이용한 조압연에서의 압하력 및 압연동력 예측 온라인 모델 개발)

  • Kim S. H.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.134-137
    • /
    • 2001
  • In this paper on-line model is derived from investigating via series of finite element process simulation. Some variables that little affect on non-dimensional parameters. ie. forward slip and torque factor. is extracted from composing on-line model Especially, this research focused on deriving on-line model which exactly predict roll force and roll power in the roughing mill process under small shape factor and small reduction ratio. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model

  • PDF

Study on Scratch Defect of Roll Forming Process (롤포밍공정에서의 스크래치 결함에 대한 연구)

  • Kim, Nak-Su;Hong, Seok-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1213-1219
    • /
    • 2001
  • In this paper, modeling of the multi-pass roll forming process with the finite element method and defect prediction in roll forming process are presented. In the roll forming process, there occurs the defect of scratch. It appears on tubes because of the friction between the strip and the roll, the unexpected sliding velocity and the contact pressure when fabricating the tubes. The surface of the product will be not uniform due to the defect. The scratch can be predicted with the simulation modeling of the finite element method, and can be avoided by modifying the design.

Roll Forming Analysis for High Strength Steel Bumper Process (고장력강 범퍼 빔의 롤 포밍 공정)

  • Kim, Dong Hong;Jung, Dong Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.797-801
    • /
    • 2013
  • Today's automotive industry is evolving toward low-emissions or zero-emissions high-efficiency vehicles. Highly efficient power sources are required, as well as high strength steels for various parts to increase safety. In this study, we investigated the roll-forming process for the development of high strength, lightweight steel bumper beams. The roll-forming process was analyzed using the software package Shape-RF in combination with a rigid-plastic finite element method model. An optimal roll-forming process based on roll-pass was obtained using finite element method simulations.

Development of Manufacturing Technology for Bumper Back Beam with Sandwich Plate (샌드위치판재를 적용한 자동차 범퍼 빔 개발)

  • Kim, D.K.;Ryu, J.S.;Park, S.E.;Lee, K.H.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.199-202
    • /
    • 2009
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. Tn this process, each pair of forming rolls installed in a forming machine play a particular role in making up the required cross-section and longitudinal shape of the product. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal Front Bumper Beam manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle. And also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

An Analysis of Hot-Rolling in the Twin-Roll Strip Casting Process by using the Slab Method (슬랩법을 이용한 쌍롤식 박판주조 공정의 열간 압연 해석)

  • Shim, Hyun-Bo
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.63-83
    • /
    • 1994
  • In this paper, the slab method have been applied to investigate the strip casting process in which hot coil is produced from molten steel directly. In the twin roll strip casting process, molten steel supplied by the nozzle cools and solidifies due to the heat extraction effect of the rolls and hot rolling of the solidified shell takes place simultaneously. The analysis of hot rolling has been carried out by using the existing results of solidification analysis for the twin roll strip casting process. The current slab method provides basic design data such as roll separation force, rolling torque, rolling power as well as end dam separation force which are required to design strip caster. The effect of friction on the basic process parameters are investigated also. It is shown that the use of appropriate friction coefficient is important and that the characteristics of hot rolling in the twin-roll strip casting process is quite different from the conventional hot rolling processes.

  • PDF

Rolling Process Automation For Uniform Thickness of Dough Sheet of Ramen Noddles (라면 면대의 균일한 두께를 위한 압연공정 자동화)

  • Yoo, Dong-Sang;Yoo, Byung-Kook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.97-103
    • /
    • 2012
  • The basic processing unit for instant ramen noodles includes mixing, rolling, boiling, frying, cooling, and packing processes. For uniform thickness of dough sheets in rolling process, the roll-gap in rolling process needs to keep uniform thickness of flour sheets in spite of different kinds of raw materials. In this paper, we have developed a roll gap adjustment system using a PLC (Programmable Logic Controller) with a touch panel and an AC servo-mechanism to make dough sheets with a good gluten starch-network structure and uniform thickness and to contribute to process standardization by transferring from tacit knowledge of skilled workers to explicit knowledge. The developed system can adjust the roll gap in units of 0.01mm and correspond to various product items which have different thickness specification by recalling the presetting values of the desired thickness from database.