• Title/Summary/Keyword: Roll Bending

Search Result 116, Processing Time 0.022 seconds

Dynamic Bulging Behavior Analysis by Finite Difference Method in High Speed Continuous Casting of Thin Slab (유한 차분법에 의한 Thin Slab 고속 연속주조의 동적벌징 거동해석)

  • Jeong, Yeong-Jin;Sin, Geon;Jo, Gi-Hyeon;Gang, Chung-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1650-1660
    • /
    • 2000
  • Continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, rep lacing the conventional route of ingot casting and rolling. In order to achieve this merit, however, more studies about the mechanism between roll and slab are needed. In this paper, a dynamic bulging in steel cast slabs was simulated by considering the solidification and heat transfer. This study is to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under the ferrostatic pressure and slab-self weight has been calculated in terms of creep and elasto-plasticity. The strain and strain rate distributions in solidified shell undergoing a series of bulging are calculated with working boundary conditions.

A Field Survey on the Structure and Maintenance Status of Pipe Framed Greenhouses (파이프 골조 온실의 구조 및 유지관리실태 조사분석)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.106-114
    • /
    • 2000
  • An investigation was conducted to get the basic data for establishing maintenance strategy of pipe framed greenhouses. The contents of the investigation consisted of actual state of structures, maintenance status, meteorological disaster, and corrosion characteristics of pipe framework in greenhouses. the number of greenhouses investigated was 108 in total. Most multi-span greenhouses had narrower width and lower height than the standared 1-2W greenhouse, and most of single-span greenhouses were tunnel type. In multi-span greenhouses, the size and interval of frameworks such as rafter, purline, column , and cross beam were mostly suitable, but frameworks of single-span greenhouses were mostly insufficient. After about 7 years in grounds, 8 years in joints, 10 years in bending parts. and 13 years in columns. pipe surface was mostly rusted. Most weak parts in corrosion were pipes in contact with the ground, joints, roll-up shaft pipes, and pipes close to the gutter. Almost all of the greenhouse farmers didn't pay any attention to maintenance affair in a regular interval for pipe framed grenhouses. Many greenhouses have experienced the meteorologicla diaster such as uplift of foundation, partial or complete failure by the hyphoon and/or high winds.

  • PDF

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

A Study on Improvement of Metal-Ceramic Bonding Strength by Addition of Aluminum to Casting Metal Alloy (도재주조용 합금에 있어서 알루미륨 첨가에 따른 metal-ceramic과의 결합력 증진에 관한 연구)

  • Lee, Jae-Won;Min, Byong-Kuk;Han, Min-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • The Purpose of this study was to investigate the chemically improvement of metal-ceramics bond strength in the course of recasting Ni-Cr metal composite system with 10wt.%, 20wt.% and 30wt.% aluminum respectively. We have tested the bond strength, micro-structure, chemical composition of each metal composites and metal- ceramic bond interfaces by 3-point bending strength tester, SEM and EDS. We have made the conclusions through this study as follow: 1. The most suitable amount of aluminum to the Ni-Cr metal composite recasting is 20wt. % for improving metal-ceramics bond strength with debonding strength value of 49.54 kgf/mm2. 2. The aluminum must be changed to small spread alumina like phases and second aluminum-metal composites phases in the morphology of Ni-Cr metal composite system by adding during it's casting. These second phases have inclined functional oxide phases mixed with metal elements and they must take roll to improvement of metal-ceramics bond strength. 3. In the case of 30wt.% aluminum appended to Ni-Cr metal composite system, an excess of second inclined functional oxide phases produce cracks and spalling of them apart from it's base material. It must be a important factor of reduction of metal-ceramics bond strength.

  • PDF

Relations between Input Parameters and Residual Deformation in Line Heating process using Finite Element Analysis and Multi-Variate Analysis (유한요소해석과 다변수해석에 의한 선상가열 변형관계식)

  • Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.69-80
    • /
    • 2002
  • Sequential process of roll-bending and line heating has been used to deform the curved hull-plates in shipyards. A growing interest for the mechanization or automation of the line heating process has been noted. Relations between heating conditions and residual deformations are important components needed for the mechanization. The residual deformations are investigated by using a thermal elastic-plastic analysis based on the finite element analysis(FEA). Several experiments are also performed to examine the validity of the results of FEA. The input parameters of line heating are suggested by dimensional analysis of line heating. The dimensional analysis can extract the primary input-parameters of line heating. The relations between the heating conditions and the residual deformations are set up by multi-variate analysis and multiple-regression method. This study suggests a method for the relation between the heating conditions and the deformations lying under the line heating.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.