• Title/Summary/Keyword: Role Models

Search Result 1,902, Processing Time 0.03 seconds

Quantitative Deterioration and Maintenance Profiles of Typical Steel Bridges based on Response Surface Method (응답면 기법을 이용한 강교의 열화 및 보수보강 정량화 이력 모델)

  • Park, Seung-Hyun;Park, Kyung Hoon;Kim, Hee Joong;Kong, Jung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.765-778
    • /
    • 2008
  • Performance Profiles are essential to predict the performance variation over time for the bridge management system (BMS) based on risk management. In general, condition profiles based on experts opinion and/or visual inspection records have been used widely because obtaining profiles based on real performance is not easy. However, those condition profiles usually don't give a good consistency to the safety of bridges, causing practical problems for the effective bridge management. The accuracy of performance evaluation is directly related to the accuracy of BMS. The reliability of the evaluation is important to produce the optimal solution for distributing maintenance budget reasonably. However, conventional methods of bridge assessment are not suitable for a more sophisticated decision making procedure. In this study, a method to compute quantitative performance profiles has been proposed to overcome the limitations of those conventional models. In Bridge Management Systems, the main role of performance profiles is to compute and predict the performance of bridges subject to lifetime activities with uncertainty. Therefore, the computation time for obtaining an optimal maintenance scenario is closely related to the efficiency of the performance profile. In this study, the Response Surface Method (RSM) based on independent and important design variables is developed for the rapid computation. Steel box bridges have been investigated because the number of independent design variables can be reduced significantly due to the high dependency between design variables.

Association between a Genetic Variant of CACNA1C and the Risk of Schizophrenia and Bipolar I Disorder Across Diagnostic Boundaries (조현병과 제1형 양극성장애의 진단 경계를 넘어선 공통적 후보유전자로서의 CACNA1C에 대한 단일염기다형성 연합 연구)

  • Lee, Bora;Baek, Ji Hyun;Cho, Eun Young;Yang, So-Yung;Choi, Yoo Jin;Lee, Yu-Sang;Ha, Kyooseob;Hong, Kyung Sue
    • Korean Journal of Schizophrenia Research
    • /
    • v.21 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Objectives : Genome-wide association studies (GWASs) and meta-analyses indicate that single-nucleotide polymorphisms (SNPs) in the a-1C subunit of the L-type voltage-dependent calcium channel (CACNA1C) gene increase the risk for schizophrenia and bipolar disorders (BDs). We investigated the association between the genetic variants on CACNA1C and schizophrenia and/or BDs in the Korean population. Methods : A total of 582 patients with schizophrenia, 336 patients with BDs consisting of 179 bipolar I disorder (BD-I) and 157 bipolar II disorder (BD-II), and 502 healthy controls were recruited. Based on previous results from other populations, three SNPs (rs10848635, rs1006737, and rs4765905) were selected and genotype-wise association was evaluated using logistic regression analysis under additive, dominant and recessive genetic models. Results : rs10848635 showed a significant association with schizophrenia (p=0.010), the combined schizophrenia and BD group (p=0.018), and the combined schizophrenia and BD-I group (p=0.011). The best fit model was dominant model for all of these phenotypes. The association remained significant after correction for multiple testing in schizophrenia and the combined schizophrenia and BD-I group. Conclusion : We identified a possible role of CACNA1C in the common susceptibility of schizophrenia and BD-I. However no association trend was observed for BD-II. Further efforts are needed to identify a specific phenotype associated with this gene crossing the current diagnostic categories.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

A Study of Product Development Projects of Startup Ventures on Product Development Performance: Exploring the Role of Entrepreneurial Business Model (벤처기업의 제품개발 프로젝트와 제품개발 성과: 비즈니스 모델의 역할 탐색)

  • Yoon, HyunJoong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.5
    • /
    • pp.265-278
    • /
    • 2022
  • R&D projects for product development are crucial for ventures' growth and success. Current study summarizes existing studies that identify the relationship between startup ventures' R&D department, R&D investment, and R&D cooperation on product development performance, and highlights the effects of business model as well as the roles of R&D activities for product development project that have been traditionally emphasized. In order to consider the effects of business models that were not previously available, the effects of these factors on product development performance were comprehensively analyzed. The research results with 180 venture cases surveyed on venture companies in the growth stage in Korea, showed that the effect of product development project activities measured by R&D department, R&D investment and R&D cooperation on product development performance is not evident. However, the effect of business model on product development time and product development performance measured by product innovation was confirmed. In particular, it was found that the clarity and uniqueness of the business model interacted with the R&D investment to shorten the product development time and directly increase the innovativeness of the developed product. Based on these analysis results, the implications of this study, limitations of the study, and the future research directions were described.

Liver-to-Spleen Volume Ratio Automatically Measured on CT Predicts Decompensation in Patients with B Viral Compensated Cirrhosis

  • Ji Hye Kwon;Seung Soo Lee;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Ho Sung Kim;Chul-min Lee;Kang Mo Kim;So Jung Lee;So Yeon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1985-1995
    • /
    • 2021
  • Objective: Although the liver-to-spleen volume ratio (LSVR) based on CT reflects portal hypertension, its prognostic role in cirrhotic patients has not been proven. We evaluated the utility of LSVR, automatically measured from CT images using a deep learning algorithm, as a predictor of hepatic decompensation and transplantation-free survival in patients with hepatitis B viral (HBV)-compensated cirrhosis. Materials and Methods: A deep learning algorithm was used to measure the LSVR in a cohort of 1027 consecutive patients (mean age, 50.5 years; 675 male and 352 female) with HBV-compensated cirrhosis who underwent liver CT (2007-2010). Associations of LSVR with hepatic decompensation and transplantation-free survival were evaluated using multivariable Cox proportional hazards and competing risk analyses, accounting for either the Child-Pugh score (CPS) or Model for End Stage Liver Disease (MELD) score and other variables. The risk of the liver-related events was estimated using Kaplan-Meier analysis and the Aalen-Johansen estimator. Results: After adjustment for either CPS or MELD and other variables, LSVR was identified as a significant independent predictor of hepatic decompensation (hazard ratio for LSVR increase by 1, 0.71 and 0.68 for CPS and MELD models, respectively; p < 0.001) and transplantation-free survival (hazard ratio for LSVR increase by 1, 0.8 and 0.77, respectively; p < 0.001). Patients with an LSVR of < 2.9 (n = 381) had significantly higher 3-year risks of hepatic decompensation (16.7% vs. 2.5%, p < 0.001) and liver-related death or transplantation (10.0% vs. 1.1%, p < 0.001) than those with an LSVR ≥ 2.9 (n = 646). When patients were stratified according to CPS (Child-Pugh A vs. B-C) and MELD (< 10 vs. ≥ 10), an LSVR of < 2.9 was still associated with a higher risk of liver-related events than an LSVR of ≥ 2.9 for all Child-Pugh (p ≤ 0.045) and MELD (p ≤ 0.009) stratifications. Conclusion: The LSVR measured on CT can predict hepatic decompensation and transplantation-free survival in patients with HBV-compensated cirrhosis.

Role of Multiparametric Prostate Magnetic Resonance Imaging before Confirmatory Biopsy in Assessing the Risk of Prostate Cancer Progression during Active Surveillance

  • Joseba Salguero;Enrique Gomez-Gomez;Jose Valero-Rosa;Julia Carrasco-Valiente;Juan Mesa;Cristina Martin;Juan Pablo Campos-Hernandez;Juan Manuel Rubio;Daniel Lopez;Maria Jose Requena
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.559-567
    • /
    • 2021
  • Objective: To evaluate the impact of multiparametric magnetic resonance imaging (mpMRI) before confirmatory prostate biopsy in patients under active surveillance (AS). Materials and Methods: This retrospective study included 170 patients with Gleason grade 6 prostate cancer initially enrolled in an AS program between 2011 and 2019. Prostate mpMRI was performed using a 1.5 tesla (T) magnetic resonance imaging system with a 16-channel phased-array body coil. The protocol included T1-weighted, T2-weighted, diffusion-weighted, and dynamic contrast-enhanced imaging sequences. Uroradiology reports generated by a specialist were based on prostate imaging-reporting and data system (PI-RADS) version 2. Univariate and multivariate analyses were performed based on regression models. Results: The reclassification rate at confirmatory biopsy was higher in patients with suspicious lesions on mpMRI (PI-RADS score ≥ 3) (n = 47) than in patients with non-suspicious mpMRIs (n = 61) and who did not undergo mpMRIs (n = 62) (66%, 26.2%, and 24.2%, respectively; p < 0.001). On multivariate analysis, presence of a suspicious mpMRI finding (PI-RADS score ≥ 3) was associated (adjusted odds ratio: 4.72) with the risk of reclassification at confirmatory biopsy after adjusting for the main variables (age, prostate-specific antigen density, number of positive cores, number of previous biopsies, and clinical stage). Presence of a suspicious mpMRI finding (adjusted hazard ratio: 2.62) was also associated with the risk of progression to active treatment during the follow-up. Conclusion: Inclusion of mpMRI before the confirmatory biopsy is useful to stratify the risk of reclassification during the biopsy as well as to evaluate the risk of progression to active treatment during follow-up.

Comparison of Hypotheses-Formation Processes between an Earth Scientist and Undergraduate Students: A Case Study about a Typhoon's Anomalous Path (지구과학자와 대학생들의 가설 형성 과정 비교: 태풍의 이상 경로에 대한 사례를 중심으로)

  • Oh, Phil-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.649-663
    • /
    • 2008
  • The purpose of this study was to compare the processes of making hypotheses concerning the anomalous path of Wukong, a typhoon that came close to Korea recently, between an earth scientist and undergraduate students. Data were obtained through interviews with a practicing earth scientist as well as five undergraduate students. Inquiry reports of the students were also analysed. The result showed that while the earth scientist conducted a case study with already-established models of typhoon, the students were enabled to work on the specific case of Wukong only after they learned general theories on typhoons. Background knowledge played an important role for the scientist and students to formulate scientific hypotheses. Both the earth scientist and undergraduate students generate multiple working hypotheses, and they considered a couple of conditions to select more plausible hypotheses, including theoretical coherence, causative processes, and consistency with empirical data. Despite these similarities, there were differences in the scope and depth of background knowledge between the scientist and students. In addition, it was not likely that the undergraduate students possessed explicit perceptions of the conditions which could make a hypothesis more probable, except for the empirical consistency. Implications for science education and relevant research were discussed.

Role and Clinical Importance of Progressive Changes in Echocardiographic Parameters in Predicting Outcomes in Patients With Hypertrophic Cardiomyopathy

  • Kyehwan Kim;Seung Do Lee;Hyo Jin Lee;Hangyul Kim;Hye Ree Kim;Yun Ho Cho;Jeong Yoon Jang;Min Gyu Kang;Jin-Sin Koh;Seok-Jae Hwang;Jin-Yong Hwang;Jeong Rang Park
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.2
    • /
    • pp.85-95
    • /
    • 2023
  • BACKGROUND: The prognostic utility of follow-up transthoracic echocardiography (FU-TTE) in patients with hypertrophic cardiomyopathy (HCM) is unclear, specifically in terms of whether changes in echocardiographic parameters in routine FU-TTE parameters are associated with cardiovascular outcomes. METHODS: From 2010 to 2017, 162 patients with HCM were retrospectively enrolled in this study. Using echocardiography, HCM was diagnosed based on morphological criteria. Patients with other diseases that cause cardiac hypertrophy were excluded. TTE parameters at baseline and FU were analyzed. FU-TTE was designated as the last recorded value in patients who did not develop any cardiovascular event or the latest exam before event development. Clinical outcomes were acute heart failure, cardiac death, arrhythmia, ischemic stroke, and cardiogenic syncope. RESULTS: Median interval between the baseline TTE and FU-TTE was 3.3 years. Median clinical FU duration was 4.7 years. Septal trans-mitral velocity/mitral annular tissue Doppler velocity (E/e'), tricuspid regurgitation velocity, left ventricular ejection fraction (LVEF), and left atrial volume index (LAVI) at baseline were recorded. LVEF, LAVI, and E/e' values were associated with poor outcomes. However, no delta values predicted HCM-related cardiovascular outcomes. Logistic regression models incorporating changes in TTE parameters had no significant findings. Baseline LAVI was the best predictor of a poor prognosis. In survival analysis, an already enlarged or increased size LAVI was associated with poorer clinical outcomes. CONCLUSIONS: Changes in echocardiographic parameters extracted from TTE did not assist in predicting clinical outcomes. Cross-sectionally evaluated TTE parameters were superior to changes in TTE parameters between baseline and FU at predicting cardiovascular events.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

A Case Study on Growth Through Coupled Process Open Innovation Open Innovation in the Faculty Startup Ecosystem: From the Perspective of Core Competency Theory (교원창업 생태계에서 결합형 오픈이노베이션을 통한 성장 사례 연구: 핵심역량이론 관점에서)

  • Changwon Yoon;Jeahong Park;Youngwoo Sohn;Youngjin Kim;Yeoungho Seo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.3
    • /
    • pp.173-186
    • /
    • 2024
  • This paper analyzes a case of successful faculty entrepreneurship through a coupled process of open innovation in a university context, using the core competency theory perspective. Initially, the current state of faculty entrepreneurship is examined, and the effects of interdisciplinary coupled processes of open innovation are explored, focusing on the case of 'Omotion Inc.,' a startup utilizing generative AI technology for hyper-realistic 3D virtual human experiences. The research methodology involves in-depth interviews with Omotion Inc.'s co-founders, technology commercialization professionals, and experts in the field, followed by analysis based on foundational theories. Applying the core competency theory, this paper scrutinizes the process of integrating diverse expertise and technologies from various academic disciplines. The analysis goes beyond the limitations of faculty entrepreneurship confined to a single technology-centric research domain. Instead, it explores the possibilities of enhancement and value creation through coupled processes, providing practical implications for the university entrepreneurial ecosystem. The aim is to extend the traditional roles of education and research within the university, presenting a role in economic value creation beyond the boundaries of conventional faculty entrepreneurship. Through the collaboration of two faculty members, this study showcases the creation of novel technology and business models. It establishes that successful coupled processes of open innovation in faculty entrepreneurship, from a core competency theory perspective, require the entrepreneurial firm to possess (1) entrepreneurial capabilities, (2) technological capabilities, and (3) networking capabilities. The implications of this research highlight the positive impact of coupled processes of open innovation in faculty entrepreneurship, as evidenced by the Omotion Inc. case, offering guidance on entrepreneurial directions for university members preparing for entrepreneurship.

  • PDF