• Title/Summary/Keyword: Rod bundle

Search Result 133, Processing Time 0.034 seconds

Thermal-hydraulic analysis of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires

  • Chenglong Wang;Siyuan Chen;Wenxi Tian;G.H. Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2534-2546
    • /
    • 2023
  • Gas-cooled space reactor, which adopts He-Xe gas mixture as working fluid, is a better choice for megawatt power generation. In this paper, thermal-hydraulic characteristics of He-Xe gas mixture in 2×2 rod bundle wrapped with helical wires is numerically investigated. The velocity, pressure and temperature distribution of the coolant are obtained and analyzed. The results show that the existence of helical wires forms the vortexes and changes the velocity and temperature distribution. Hot spots are found at the contact corners between helical wires and fuel rods. The highest temperature of the hot spots reach 1600K, while the mainstream temperature is less than 400K. The helical wire structure increases the friction pressure drop by 20%-50%. The effect extent varies with the pitch and the number of helical wires. The helical wire structure leads to the reduction of Nusselt number. Comparing thermal-hydraulic performance ratios (THPR) of different structures, the THPR values are all less than 1. It means that gas-cooled space reactor adopting helical wires could not strengthen the core heat removal performance. This work provides the thermal-hydraulic design basis for He-Xe gas cooled space nuclear reactor.

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

A Study on Coolant Mixing in Multirod Bundle Subchannels

  • Cha, Jong-Hee;Cho, Moon-Haeng
    • Nuclear Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1970
  • A study was conducted on the coolant mixing between water flowing in two adjacent subchannels. Measurements were made of the quantity of mass transferred between a larger rectangular channel and a smaller triangular channel in a 19-rod fuel bundle under the conditions of single phase flow and air-water two-phase flow. The results of the experiments showed that the low mixing rate appears in single phase flow, and high mixing rate was measured in air-water two-phase flow Mixing rate decreases with the increasing of air void fraction during the air-water flow. It seems that the high mixing rate in the air-water flow was caused due to adequate agitation of the chaotic air void.

  • PDF

Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle (소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발)

  • Euh, Dong-Jin;Chang, Seok-Kyu;Bae, Hwang;Kim, Seok;Kim, Hyung-Mo;Choi, Hae-Seob;Choi, Sun-Rock;Lee, Hyung-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.

The Grid Strap Vibration Characteristics of the 5×5 Nuclear Fuel Mock-up (5×5 핵연료 모의 집합체의 지지격자 스트랩 진동특성)

  • Kim, Kyoung-Hong;Park, Nam-Gyu;Kim, Kyoung-Ju;Suh, Jung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.619-625
    • /
    • 2012
  • Since the fuel is always exposed to turbulent flow, the grid strap shows flow induced vibration characteristics that impact on the nuclear fuel soundness. The dynamic behavior of grids in nuclear fuels is quite complex, since two pairs of spring and dimple support are contacted with rods by friction in the limited space. This paper focuses on investigation of the grid strap(test fuel strap, TFS) vibration in one cell. TFS consists of a single spring and double dimples. To identify the grid strap vibration, modal analysis of the strap is performed using finite element method(FEM). Modal testing on a $5{\times}5$ grid structure without rods is performed. The modal testing results are compared to analytic results. In addition, random test considering rod effect is performed about a $5{\times}5$ grid with rods under real contact condition in the air. Finally, the strap vibration of a $5{\times}5$ fuel bundle in investigation of flow induced vibration(INFINIT) facility is measured in real fluid velocity condition without heating. It is shown that modal frequencies from the test are almost equal to those peak frequencies in the INFINIT test.

Development and validation of a fast sub-channel code for LWR multi-physics analyses

  • Chaudri, Khurrum Saleem;Kim, Jaeha;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • A sub-channel solver, named ${\underline{S}}teady$ and ${\underline{T}}ransient$ ${\underline{A}}nalyzer$ for ${\underline{R}}eactor$ ${\underline{T}}hermal$ hydraulics (START), has been developed using the homogenous model for two-phase conditions of light water reactors. The code is developed as a fast and accurate TH-solver for coupled and multi-physics calculations. START has been validated against the NUPEC PWR Sub-channel and Bundle Test (PSBT) database. Tests like single-channel quality and void-fraction for steady state, outlet fluid temperature for steady state, rod-bundle quality and void-fraction for both steady state and transient conditions have been analyzed and compared with experimental values. Results reveal a good accuracy of solution for both steady state and transient scenarios. Axially different values for turbulent mixing coefficient are used based on different grid-spacer types. This provides better results as compared to using a single value of turbulent mixing coefficient. Code-to-code evaluation of PSBT results by the START code compares well with other industrial codes. The START code has been parallelized with the OpenMP algorithm and its numerical performance is evaluated with a large whole PWR core. Scaling study of START shows a good parallel performance.

Realistic thermal analysis of the CANDU spent fuel dry storage canister

  • Tae Gang Lee;Taehyeon Kim;Taehyung Na;Byongjo Yun;Jae Jun Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4597-4606
    • /
    • 2023
  • Thermal analysis of the CANDU spent fuel dry storage canister is very important to ensure the integrity of the spent fuel. The analyses have been conducted using a conservative approach, with a particular focus on the peak cladding temperature (PCT) of the fuel rods in the canister. In this study, we have performed a realistic thermal analysis using a computational fluid dynamics (CFD) code. The canister contains 9 fuel bundle baskets. A detailed analysis of even a single basket requires significant computational resources. To overcome this challenge, we replaced each basket with an equivalent heat conductor (EHC), of which effective thermal conductivity (ETC) is developed from the results of detailed CFD calculations of a fuel bundle basket. Then, we investigated the effects of some conservative models, ultimately aiming at a realistic analysis. The results revealed: (i) The influence of convective heat transfer in the basket cannot be ignored, but it's less significant than expected. (ii) Modeling of the lifting rod is crucial, as it plays a decisive role in axial heat transfer at the center of the canister and significantly reduces the PCT. (iii) Convection within the canister is very important, as it not only reduces the PCT but also shifts its location upwards.

Study of the Secondary Flow Effect on the Turbulent Flow Characteristics in Fuel Rod Bundles (핵연료봉 주위의 난류 유동장 특성에 미치는 이차 유동의 영향에 대한 연구)

  • Lee, Kye-Bock;Jang, Ho-Cheol;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.345-354
    • /
    • 1994
  • Numerical Predictions including secondary flows have been Performed for fully developed turbulent single-phase rod bundle flows. The k-$\varepsilon$ turbulence model(two equation model) for the isotropic eddy viscosity, together with an algebraic stress model for generating secondary velocities, enabled the prediction of mean axial velocities, secondary velocities, and turbulent kinetic energy and turbulent stresses. Comparisons with experiment hate shown that the influence of secondary motion on mean flow and turbulence is dearly evident. The convective transport effects of secondary flow on the velocity field have been identified.

  • PDF

Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes (선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gonghee;Shin, Andong;Cheong, Aeju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.