• 제목/요약/키워드: Rocking Method

검색결과 93건 처리시간 0.021초

캐비닛내부응답스펙트럼을 위한 전기캐비닛 전도강성 (Rocking Stiffness of Electrical Cabinet for In-Cabinet Response Spectrum)

  • 정연하;홍기증;조성국
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.95-102
    • /
    • 2020
  • Electrical instruments and devices contained in cabinets for controlling nuclear power plants require seismic qualification; likewise, in-cabinet response spectrum (ICRS) is necessary. Gupta et al. (1999) suggested the Ritz method, where rocking, frame bending, and plate bending behaviors of cabinets are considered, as a method for determining ICRS. This research proposes a method to determine the rocking stiffness of cabinets, which represents its rocking behavior. The cabinet is fixed on mounting frames and is connected to the base concrete by anchors. When horizontal excitation is applied to the cabinet, the mounting frames at anchors are locally deformed, the mounting frames are bent, and then rocking in the cabinet becomes evident. A method to determine equivalent vertical spring stiffness representing the local deformation of the mounting frames at anchors is then proposed. Subsequently, the rocking stiffness of this mounting frame is calculated upon assumption of the mounting frame as an indeterminate beam.

3차원 구형 액체 저장 Tank의 Rocking응답 (The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank)

  • 김재관;박진용;진병무;조양희
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.23-34
    • /
    • 1998
  • 연약한 지반위에 기초한 유연한 구형 액체 저장탱크의 Rocking 운동에 대한 3차원 지진응답을 규명하기 위해서 동적 유체-구조 물-지반 계의 상호작용 해석방법을 개발하였다. 수평방향 병진 운동과 Rocking 운동을 받는 3차원의 구형 탱크의 운동 지배방정식을 Rayleigh-Ritz 방법을 적용하여 유도하였고 기반암위 토층의 표면에 놓인 강체 기초의 동적 강성행렬과 유체-구조물 계의 지배방정식을 결합하여 계산하였다.

  • PDF

Chaotic Behavior on Rocking Vibration of Rigid Body Block Structure under Two-dimensional Sinusoidal Excitation (In the Case of No Sliding)

  • Jeong, Man-Yong;Lee, Hyun-;Kim, Ji-Hoon;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1249-1260
    • /
    • 2003
  • This present work focuses on the influence of nonlinearities associated with impact on the rocking behavior of a rigid body block subjected to a two-dimensional excitation in the horizontal and vertical directions. The nonlinearities in rocking system are found to be strongly dependent on the impact between the block and the base that abruptly reduces the kinetic energy. In this study, the rocking systems of the two types are considered : The first is an undamped rocking system model that disregards the energy dissipation during the impact and the second is a damped rocking system, which incorporates energy dissipation during the impact. The response analysis is carried out by a numerical method using a non-dimensional rocking equation in which the variations in the excitation levels are considered. Chaos responses are observed over a wide range of parameter values, and particularly in the case of large vertical displacements, the chaotic characteristics are observed in the time histories, Poincare sections, the power spectral density and the largest Lyapunov exponents of the rocking responses. Complex behavior characteristics of rocking responses are illustrated by the Poincare sections.

Some practical considerations in designing underground station structures for seismic loads

  • Gu, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.491-500
    • /
    • 2015
  • Under seismic loading, underground station structures behave differently from above ground structures. Underground structures do not require designated energy dissipation system for seismic loads. These structures are traditionally designed with shear or racking deformation capacity to accommodate the movement of the soil caused by shear waves. The free-field shear deformation method may not be suitable for the design of shallowly buried station structures with complex structural configurations. Alternatively, a station structure can develop rocking mechanisms either as a whole rigid body or as a portion of the structure with plastic hinges. With a rocking mechanism, station structures can be tilted to accommodate lateral shear deformation from the soil. If required, plastic hinges can be implemented to develop rocking mechanism. Generally, rocking structures do not expect significant seismic loads from surrounding soils, although the mechanism may result in significant internal forces and localized soil bearing pressures. This method may produce a reliable and robust design of station structures.

구형 유체 저장 Tank의 Rocking응답 (The Rocking Response of Rectangular Fluid Storage Tank)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.107-114
    • /
    • 1997
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of rocking motion on the seismic response of the 3-D flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation of 3-D rectangular tanks subjected to the translational and rocking motions is obtained by Rayleigh-Ritz method. The dynamic stiffness matrix of the rigid surface foundation resting on the surface of a stratum are calculated by hyperelement method. The seismic responses of a 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation of the structural motion with the dynamic stiffness matrix of the rigid surface foundation.

  • PDF

연직지반운동이 자립형 구조체의 Rocking 거동에 미치는 영향 (Effects of Vertical Ground Motion on Rocking Response of Free Standing Structure)

  • 최인길;전영선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.169-176
    • /
    • 1997
  • In this study, vertical ground motion effects on rocking response of free standing structure are investigated. Based on the mathematical model, computer program is developed using Kutta's Fourth-Order Method. Using the program, several parametric studis are performed to predict the effects of vertical ground motion. From the results of this study, it can be found that the vertical ground motion may overturn the structure which is stable under the horizontal ground motion, stabilize the structure which overturns due to horizontal ground motion alone, and delay the time of overturning of the structure or greatly reduce the rocking of the structure. It is concluded that the effect of vertical ground motion on the rocking response of free standing structure is apparently not systematic.

  • PDF

꺽쇠형 강재 댐퍼의 록킹 거동 (Rocking Behavior of Clamped Shape Metallic Damper)

  • 이현호
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.27-34
    • /
    • 2019
  • This study proposes a technique to dissipate the energy of a rocking wall installed on a frame by using a metallic damper. The rocking behavior is to turn left and right about the wall vertical axis. The development system is a method of dissipating energy by installing a damper which is the like on a large displacement portion. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. The higher the strut height, the better the energy dissipation capacity. The proposed equation for estimating the steel damper strength applied to this study is a straight type strut damper. However, it is not suitable for calculation of the strength of clamped type strut damper where both flexural behavior and shear behavior are mixed.

강봉 댐퍼와 록킹 거동 (Steel Rod Damper and Rocking Behavior)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권6호
    • /
    • pp.1-9
    • /
    • 2020
  • 본 연구에서는 벽체의 록킹 거동을 고려한 내진보강 기법을 개발하였다. 록킹 거동은 벽체 수직 축을 중심으로 좌우로 회전하는 것으로, 개발 시스템은 변위 큰 부분에 댐퍼 등을 설치하여 에너지를 소산 시키는 방법이다. 댐퍼는 강봉 댐퍼를 사용하였으며, 강봉 지름 및 길이(형상비)를 변수로 선정하였다. 실험결과 댐퍼길이 260mm 경우 우수한 내진 성능을 보유한 것으로 평가되었다.

인체 움직임에 강인한 IR-UWB 레이더 기반의 호흡속도추정 (Respiration Rate Estimation using IR-UWB Radar Signals Robust to Body-Rocking)

  • 박형철
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.49-54
    • /
    • 2012
  • 본 논문에서는 IR-UWB 레이더 신호의 크기와 도달시간을 결합한 새로운 방법의 호흡속도추정 방법을 제안한다. 특히 이 논문에서는 분석을 통해서 인체의 흔들림이 호흡속도추정에 왜곡을 일으키지 않음을 증명한다. 분석을 바탕으로 레이더 신호의 크기 정보 신호와 도달시간 정보 신호의 컨볼루션 방법을 제안한다. 하드웨어 실험을 통한 분석을 통해서 호흡속도성분의 추출 능력이 기존의 추정 방법에 비해서 10dB 이상 향상됨을 보인다.

Rocking response of self-centring wall with viscous dampers under pulse-type excitations

  • Zhang, Lingxin;Huang, Xiaogang;Zhou, Zhen
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.215-226
    • /
    • 2020
  • A self-centering wall (SCW) is a lateral resistant rocking system that incorporates posttensioned (PT) tendons to provide a self-centering capacity along with dampers to dissipate energy. This paper investigates the rocking responses of a SCW with base viscous dampers under a sinusoidal-type pulse considering yielding and fracture behaviour of the PT tendon. The differences in the overturning acceleration caused by different initial forces in the PT tendon are computed by the theoretical method. The exact analytical solution to the linear approximate equation of motion is also provided for slender SCWs. Finally, the effects of the ductile behaviour of PT tendons on the rocking response of a SCW are analysed. The results demonstrate that SCWs exhibit two overturning modes under pulse excitation. The overturning region with Mode 1 in the PT force cases separates the safe region of the wall into two parts: region S1 with an elastic tendon and region S2 with a fractured tendon. The minimum overturning acceleration of a SCW with an elastic-brittle tendon becomes insensitive to excitation frequency as the PT force increases. After the plastic behaviour of the PT tendon is considered, the minimum overturning acceleration of a SCW is increased significantly in the whole range of the studied wg/p.