• Title/Summary/Keyword: Rocket engine

Search Result 988, Processing Time 0.027 seconds

Study of Lay-out Design Concept for Liquid Rocket Engine System (액체로켓엔진 시스템 Lay-out 설계 개념 연구)

  • Chung, Yong-hyun;Lee, Eun-Seok
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.42-45
    • /
    • 2007
  • The process of Lay-out design and assembly for liquid rocket engine was presented and the Lay-out design for main components of liquid Rocket engine system was studied. Vertical direction is recommended in the case of turbopump's arrangement. If the length of pipe between gas-generator with turbopump's turbine is shorter, gas-generator is stable. The arrangements of main valves are recommended as near disposition to combustion chamber, because shut-down process time is shorter. Interference with launch vehicle and structural strength considering gimbal actuator's force and control performance is considered in the case of gimbal actuator's supporter design.

  • PDF

Conceptual Design of High Altitude Test Facility for Testing Liquid Rocket Engine (액체로켓엔진 고공모사시험설비의 개념설계)

  • Kim, Cheul-Woong;Nam, Chang-Ho;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.383-387
    • /
    • 2008
  • To design a high altitude test facility for testing liquid rocket engine optimal technical solutions with general understanding about characteristics of engines and test stands, mission of a rocket and the financial aspects of tests are required. In this paper conditions and requirements needed at the stage of conceptual design of high altitude engine test facility were suggested, and preliminary calculations of the sizes of a supersonic diffuser and volume of cooling water were carried out.

  • PDF

Numerical Methods in Propulsion System Design

  • Buchars'kyy, Valeriy
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.238-238
    • /
    • 2012
  • Report is devoted to place and role of numerical simulation in design of rocket propulsion systems. In introduction advanced solutions in liquid propellant rocket engines design are presented. Further essence of design process described briefly. The central place of method of solution of direct problem in design process was shown. Numerical simulation for solving direct problem of fluid dynamic was used as the alternative to theoretical and experimental approaches. Main features of numerical models of processes in propulsion systems were observed. Some results of simulation and (or) design of different types of chemical propulsion system were presented also. The combined rocket engine, rocket engine with injection of after-turbine gas into supersonic part of the nozzle, solid propellant engine and hybrid propulsion engine are under consideration.

  • PDF

Development of a Hydrogen-Peroxide Rocket Engine of l00N Thrust (l00N $H_2O_2$ Monopropellant 로켓 엔진의 개발)

  • Sang-Hee Ahn;S. Krishnan;Choog-Won Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-134
    • /
    • 2003
  • There has been a renewed interest in the use of hydrogen peroxide as an oxidizer in bipropellant liquid rocket engines as well as in hybrid rocket engines. This is because hydrogen peroxide is a propellant of low toxicity and enhanced versatility. The present paper details the features of the designed engine of l00N thrust and its facility. Also explained is the arrangement of the distillation unit to be used to prepare rocket-grade hydrogen-peroxide propellant. Results of the simulated "cold" tests are presented.

  • PDF

Development of Specific Impulse Analysis Program for a Gas Generator Cycle Rocket Engine (가스발생기 사이클 로켓엔진의 비추력 해석 프로그램 개발)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3518-3523
    • /
    • 2007
  • An analysis program of specific impulse has been developed for a gas generator cycle rocket engine. The program has been verified by comparing the published performance data of the same cycle engine with RP-1 as fuel. A model for pressure drop of regenerative cooling and film cooling mass flow rate has been suggested to satisfy the necessary cooling condition with Jet-A1 as fuel. The engine mixture ratio is defined by the film cooling mass flow rate and the core mixture ratio. The optimal condition of the combustor pressure and engine mixture ratio has been found for maximum specific impulse.

  • PDF

Development of Energy Balance Program for Staged-Combustion Cycle of Liquid Rocket Engine (액체로켓엔진 통합 설계를 위한 에너지 발란스 프로그램 개발)

  • Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.93-97
    • /
    • 2010
  • The energy balance program which can balance the relations among energy, mass flow, pressure in the staged-combustion cycle of the liquid rocket engine has been developed. The modular approach has been chosen for the analysis; the engine cycle consists of the elements from the predefined component analysis program. The engine with the staged-combustion cycle has been decomposed into several principal component modules, such as a thruster chamber, turbopumps, turbines, supply system components and a pre-burner. The program has been verified with comparison of the results to the selected data of the space shuttle main engine.

  • PDF

Performance Sensitivity Analysis of Liquid Rocket Engine (액체로켓엔진의 성능 민감도 분석)

  • Cho, Won Kook;Park, Soon Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.200-206
    • /
    • 2013
  • A performance sensitivity of liquid rocket engine to propellant density or supply pressure change was studied. The analysis program was verified to have 1% error comparing with the measured data of a turbopump-gas generator system. The engine combustion pressure decreases as fuel supply pressure increases due to decreased mixture ratio which reduces the turbine power. The engine combustion pressure increases as fuel density increases because the total propellant flow rate is increased substantially even though mixture ratio is slightly decreased. The engine combustion pressure increases when the oxidizer density or supply pressure increases.

Test of KSR-III Rocket Propellant Feeding System Using PTA-II Test Facility (PTA-II 시험설비를 활용한 KSR-III Rocket 추진기관시스템 종합시험)

  • Kang Sun-il;Cho Sang-yoen;Kwon Oh-sung;Lee Jeong-ho;Oh Seung-hyup;Ha Sung-up;Kim Young-han
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.263-266
    • /
    • 2002
  • The KSR-III developed by KARI is the first rocket vehicle which is adopting the liquid propellant rocket engine system in Korea. Not only the engine itself, but also the propellant feeding system is one of the most important component in liquid rocket vehicle. In this paper, the authors are intended to introduce the multi-purpose test facility(PTA-II Test Facility) which is constructed for the variety of tests on KSR-III feeding system(single component tests, verification tests, cold flow tests and combustion tests). With the results of these tests, we can identify the characteristics of rocket feeding system and decide the optimum setting values of feeding system for the successful flight.

  • PDF

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Rocket Engine Test Facility Improvement for Hot Firing Test of 75 ton-f Class Gas Generator and Cold Flow Test (75톤급 가스발생기 연소시험을 위한 시험장 개선 및 수류시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.29-33
    • /
    • 2009
  • On the basis of the development experience of a gas generator for the 30 ton-f thrust liquid rocket engine combustor a Subscale Ground Firing Test Facility was designed and fabricated for a gas generator for the 75 ton-f thrust liquid rocket engine combustor. The Subscale Ground Firing Test Facility developed is going to be used to develop 75 ton-f class gas generator. Acquired data and test technique from this facility will be used to develope the high performance liquid rocket engine combustor and the Ground Firing Test Facility. This report describes the improved Subscale Ground Firing Test Facility for 75 ton-f class gas generator and results of the cold flow test.

  • PDF