• Title/Summary/Keyword: Rocket Design

Search Result 656, Processing Time 0.027 seconds

Comparison of Underwater Drop Characteristics for Hazard Apparatuses on Subsea Cable Using Fluid-Structure Interaction Analysis (유체-구조 연성해석 기반 해저케이블 위해인자의 수중낙하 특성 비교)

  • Jang, Gyung-Ho;Kim, Jeong-Hun;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.324-332
    • /
    • 2018
  • It is known that damages to the subsea cables used for electric power transmission between islands and countries, including renewable energy from offshore wind power, current, tides, etc., cost much to restore, which causes social and economic losses. Various types of fishing rigs and anchors have been reported to be the greatest hazards to subsea cables. It is possible to design and construct a suitable protection facility for a subsea cable by precisely estimating the underwater behavior of such hazardous apparatuses. In this study, numerical simulations of the underwater behaviors of various hazardous apparatuses were carried out using fluid-structure interaction (FSI) analysis as a basic study to simulate the actual behavior phenomena of hazardous apparatuses in relation to a subsea cable. In addition, the underwater drop characteristics according to the types of hazardous apparatuses were compared. In order to verify the accuracy of the FSI analysis method used in this study, we compared the test results for underwater drops of a steel ball bearing. Stock anchors, stockless anchors, and rocket piles, which were actually reported to be the cases of damage to subsea cables along the southwest coast of Korea, were considered as the hazardous apparatuses for the numerical simulations. Each hazardous apparatus was generated by a Lagrangian model and coupled with the fluid domain idealized by the Eulerian equation to construct the three-dimensional FSI analysis model. The accuracy of the numerical simulation results was verified by comparing them with the analytical solutions, and the underwater drop characteristics according to the types of hazard apparatuses were compared.

Development of the Infrared Space Telescope, MIRIS

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Nam, Uk-Won;Moon, Bon-Kon;Park, Sung-Joon;Cha, Sang-Mok;Pyo, Jeong-Hyun;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Lee, Duk-Hang;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • MIRIS (Multipurpose Infra-Red Imaging System), is a small infrared space telescope which is being developed by KASI, as the main payload of Science and Technology Satellite 3 (STSAT-3). Two wideband filters (I and H) of the MIRIS enables us to study the cosmic infrared background by detecting the absolute background brightness. The narrow band filter for Paschen ${\alpha}$ emission line observation will be employed to survey the Galactic plane for the study of warm ionized medium and interstellar turbulence. The opto-mechanical design of the MIRIS is optimized to operate around 200K for the telescope, and the cryogenic temperature around 90K for the sensor in the orbit, by using passive and active cooling technique, respectively. The engineering and qualification model of the MIRIS has been fabricated and successfully passed various environmental tests, including thermal, vacuum, vibration and shock tests. The flight model was also assembled and is in the process of system optimization to be launched in 2012 by a Russian rocket. The mission operation scenario and the data reduction software is now being developed. After the successful mission of FIMS (the main payload of STSAT-1), MIRIS is the second Korean space telescope, and will be an important step towards the future of Korean space astronomy.

  • PDF

Controlling Factors of Open-Loop Combustion Response to Acoustic Pressures in Liquid Propellant Rocket Engine (강한 압력파동에 구속된 액체 추진제 연소응답의 지배인자)

  • Yoon Woongsup;Lee Gilyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.267-273
    • /
    • 2004
  • This paper targets to define controlling factors of pressure-coupled combustion response and estimate their effects on droplet evaporation process. Dynamic characteristics of hydrocarbon propellant vaporization perturbed by acoustic pressure are numerically simulated and analyzed. 1-D droplet model including phase equilibrium between two phases is applied and acoustic wave is expressed by harmonic function. Effects of various design factors and acoustic pressure on combustion response are investigated with parametric studies. Results show that driving frequency of acoustic perturbation and ambient pressure have important roles in determining magnitude and phase of combustion response. On the other hand, other parameters such as gas temperature, initial droplet size and temperature, and amplitude of acoustic wave cause only minor changes to magnitude of combustion response. Resultant changes in phase of heat of vaporization and thermal wave in droplet highly influence magnitude and phase of combustion response.

  • PDF

An Experimental Study on Pressure Loss in Straight Cooling Channels (직선형 냉각채널에서의 압력손실에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • A regeneratively-cooled channel in a liquid rocket engine is used to effectively cool a combustion chamber inner wall from hot combustion gas, and the heat transfer/pressure loss characteristics should be predicted in advance to design cooling channels. In the present research, five cooling channels with different geometric dimensions were designed and the channels were respectively manufactured using cutter and endmill. By changing coolant velocity and downstream pressure, the effects of manufacturing method, channel shape, and flow condition on pressure losses were experimentally investigated and the results were compared with the analytical results. At same channel shape and flow condition, the pressure loss in the channel machined by the cutter was lower than that by the endmill. It was also found that the pressure loss ratio between the experimental result and the analytical data changed with the channel shape and flow condition.

Study on Pressure Fluctuations Observed in Combustion of Oxygen-Rich Preburners (산화제 과잉 예연소기 연소에서 관찰되는 압력섭동에 대한 연구)

  • Seo, Seonghyeon;Kang, Sang Hun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.122-127
    • /
    • 2013
  • The paper includes the analytic results of pressure fluctuation data from the combustion of an oxidizer-rich preburner applicable to high-performance, closed-cycle liquid rocket engine systems. The combustion experiments went through two different steps of a chamber pressure during single run. Self-excited pressure fluctuations with a frequency of 78 Hz were observed only at the relatively low chamber pressure condition. These pressure fluctuations are regarded as a bulk mode. The intensity of pressure fluctuations by a root-mean-square value is 13.3% normalized by the chamber static pressure and no pressure excitation was observed at the design pressure condition. The bulk mode has an identical phase across the inside of the chamber and reveals the similar characteristics to the Helmholtz resonator.

Hydrogen Peroxide Monopropellant Thruster for KSLV-II Reaction Control System (한국형발사체 자세제어시스템을 위한 과산화수소 단일추진제 추력기)

  • Oh, Sanggwan;Kang, Shinjae;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.335-343
    • /
    • 2019
  • The third stage of the KSLV-II is equipped with the reaction control system that performs three axis-control during non-thrust coasting phase and performs a roll axis control during thrust phase. Toxic propellants such as hydrazine have been used for conventional rocket propulsions, however, recently, more studies have been conducted on the use of non-toxic eco-friendly propellants such as ADN and HAN. Especially, hydrogen peroxide has received a growing focus as an emerging propellant. It is considered an alternative of the toxic propellants because of economic advantage in producing the system, conducting operation test, and evaluation of the test result. In this paper, we describes the design, prototype, testing and evaluation of the test results with the 50 N-level hydrogen peroxide monopropellant thruster system which is currently under development.

Combustion Characteristics of the Gaseous-methane & Gaseous-oxygen Reactants under Highly Fuel-rich Conditions (연료과농 조건에서의 기체메탄-기체산소 반응물의 연소특성)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Bae, Chang Han;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • A hot-firing test was conducted using gaseous-methane and gaseous-oxygen under highly fuel-rich condition as a prior study for the development of a liquid propellant small rocket engine. To compare combustion characteristics for various equivalence ratios, the oxygen flow rate was set to 12 g/s and the methane flow rate was changed according to the equivalence ratio. As a result, it was observed that the steady-state characteristic velocity obtained during the hot-firing test steeply rose in the latter part of each test: the difference between the former and the latter steady value was enhanced overall in proportion to the equivalence ratio. Based on this, the equivalence ratio range depending on the variational characteristics of the characteristic velocity could be divided into three combustion regimes.

High Pressure Spray and Combustion Characteristics of Throttleable Pintle Injector (가변추력 핀틀 분사기의 고압 분무 및 연소특성)

  • Kim, Dae Hwan;Heo, Subeom;Kim, Inho;Hwang, Donghyun;Kang, Cheolwoong;Lee, Shinwoo;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.60-71
    • /
    • 2022
  • The reusable, low-cost launch vehicle development trend in the recent launch vehicle market is being subdivided into several ways, and the throttleable engine is one of them. Plus, several nations have selected methane as a next-generation propellant due to its cleanness. In this research, a throttleable pintle injector using gas methane and liquid oxygen as propellants was developed, followed by its spray and combustion characteristics analysis, including high pressure cold and hot tests. The designed throttleable pintle injector has a double sleeve structure, and its tightness and functionality are confirmed through repetitive atmospheric, high-pressure cold tests, and hot tests. Though some design errors were discovered and a low throttling level was unable to be achieved in the combustion test.

Hot Fire Tests of the KSR-III Sub.(I) Engines (KSR-III 축소형(I) 엔진의 연소 시험)

  • Kim, Y.H.;Kim, Y.W.;Moon, I.Y.;Ko, Y.S.;Lee, S.Y.;Ryu, C.S.;Seol, W.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.120-125
    • /
    • 2002
  • In the preceding tests using the KSR-III Sub.(I) engines, it was observed that the heat resistant capability of the engines was not enough for the mission. So Sub.(I) Mod. engines were designed and tested. The Sub.(I) Mod. engines have three major design parameters - the arrangement of main injectors, the impinging angle of main injectors and thermal barrier coating. More than twenty experiments were carried on to evaluate engine performance and heat resistance capability with respect to design parameters. In this study, the test results are introduced. Analysing the result of Sub.(I) engine tests, it is found that decreasing the impinging angle, adopting the H-type arrangement(rather than radial type arrangement) and adopting the thermal barrier coating can increase heat resistance capacity substantially. Also, engine performance evaluation is conducted using specific impulse and characteristic velocity parameter. The results show that the performance variation is small(about 5%) and the performance is better in the case of radial arrangement. It is suspected that these phenomena are caused by the change of flame structure atomization mixing characteristic of sprays and the distortion of recirculation zone. Also from the low frequency instability point of view, it is observed that reducing the impinging angle and adopting the H type arrangement can increase the instability characteristics.

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.