• Title/Summary/Keyword: Rock-fill

Search Result 116, Processing Time 0.025 seconds

Improved Evaluaton for the Seismic Capacity of Rock-Fill Dam (사력댐의 향상된 내진성능 평가방법)

  • Kwon, Hyek-Kee;Jang, Jung-Ryeol;Hur, Choon-Kun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.697-704
    • /
    • 2005
  • The objective of this study is firstly to frame up the seismic safety of rock-fill dams. It is necessary to analyze seismic response and evaluate seismic performance of rock-fill dams during earthquake. In this study, seismic damage and dynamic analysis of rock-fill dams using structural analysis package such as FLAC were performed. According detailed analysis, the vibration through the dam structure seems to be very critical depending on the shape of the dams. For more precise evaluation of seismic fragility of rock-fill dams, further research is still needed.

  • PDF

A Study of CFRD using a Gravel Fill (하상사력재를 이용한 CFRD의 연구)

  • Jeong, Chan-Kyun;Noh, Tae-Gil;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.842-853
    • /
    • 2008
  • In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.

  • PDF

Transient stochastic analysis of nonlinear response of earth and rock-fill dams to spatially varying ground motion

  • Haciefendioglu, Kemal
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • The main purpose of this paper is to investigate the effect of transient stochastic analysis on nonlinear response of earth and rock-fill dams to spatially varying ground motion. The dam models are analyzed by a stochastic finite element method based on the equivalent linear method which considers the nonlinear variation of soil shear moduli and damping ratio as a function of shear strain. The spatial variability of ground motion is taken into account with the incoherence, wave-passage and site response effects. Stationary as well as transient stochastic response analyses are performed for the considered dam types. A time dependent frequency response function is used throughout the study for transient stochastic responses. It is observed that stationarity is a reasonable assumption for earth and rock-fill dams to typical durations of strong shaking.

Study on compaction characteristics of mixed fill materials(rock and soil) in railway roadbed (철도노반 혼합(흙과 암)성토의 다짐특성에 관한 연구)

  • Kim, Dae-Sang;Park, Seong-Yong;Song, Jong-Woo;Kim, Soo-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Concrete track will be constructed in Gyungbu High Speed Railway II(GHSR II) stage construction site from Daegu to Busan. Concrete track is supported by substructure consisting of the original ground and embankment and does not allow the settlement of track because of its structural type. The embankment is composed of rock and soil mixture and settlement is feasible. So management of settlement of embankment is key point in successful construction of the concrete track. Compaction management of mixed fill materials is important in minimizing the settlement of embankment. In this study, in order to assess the compaction characteristics of mixed fill materials, large laboratory compaction tests were conducted. Mixed fill materials were obtained from two construction sites in GHSR II construction site. Modeled mixed fill materials having different rock type, fine content, maximum particle diameter, and moisture contents were prepared. From the test results, compaction characteristics of mixed fill materials were analysed.

  • PDF

Geotechnical treatment for the fault and shattered zones under core foundation of fill dam (단층 및 파쇄대가 분포하는 Fill Dam 기초의 보강대책)

  • 김연중;최명달
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.19-35
    • /
    • 1992
  • aThe elastic properties of the fault zone (width; 3~12m), the shattered zone (width; over 40m) and the fresh rock zone distributed under the core foundation of fill dam in granitic gneiss have widely different range. The deformation moduli of the fresh rock zone, the fault zone and the shattered zone obtained from in situ rock tests - Plate Load Test and Bore Hole Deformation Test - show a range of $42,000~168,000kg/\textrm{cm}^2,{\;}963~2,204kg/\textrm{cm}^2{\;}and{\;}1,238~2,098kg/\textrm{cm}^2$, respectively. The differential settlements hetween the fault zone and the fresh rock zone are expected after the dam construction. Therefore, the displacement of foundation and concrete fill are evaluated using FEADAM 84 program of finite element analysis. The geometric distribution of discontinuifies obtained from the site mapping and drilling is considered in the finite element analysis. The analysis shows that the differential settlements between the fault zone and the fresh rock zone is about 6cm, while that of concrete fill is within 0.5cm.

  • PDF

Evaluation of the applicability of the surface wave method to rock fill dams (사력댐에서의 표면파 기법 적용성 평가 연구)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Bang, Eun-Seok;Kim, Sung-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In current design practice, the shear wave velocity (Vs) of the core and rock-fill zone of a dam, one of the characteristics essential for seismic response design, is seldom determined by field tests. This is because the borehole seismic method is often restricted in application, due to stabilisation activities and concern for the security of the dam structure, and surface wave methods are limited by unfavourable in-situ site conditions. Consequently, seismic response design for a dam may be performed using Vs values that are assumed, or empirically determined. To estimate Vs for the core and rock-fill zone, and to find a reliable method for measuring Vs, seismic surface wave methods have been applied on the crest and sloping surface of the existing 'M' dam. Numerical analysis was also performed to verify the applicability of the surface wave method to a rock-fill dam. Through this numerical analysis and comparison with other test results, the applicability of the surface wave method to rock-fill dams was verified.

Safety Evaluation of Rock-Fill Dam by Seismic(MASW) Method (사력댐의 안정성평가를 위한 표면파탐사(MASW)의 활용성)

  • 정해상;오영철;방돈석;안상로
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.359-364
    • /
    • 2003
  • For safety evaluation of a rock-fill dim, it is often necessary to investigate spatial distribution of weak zones such as fracture. Both DC-resistivity survey and seismic(SASW) method are usually used for the purpose. Recently, Multichannel analysis of surface waves(MASW) method which makes up for the weak point of SASW method is developed and the site examination which is simple came to be possible comparatively. In order to obtain 2-D shear-wave velocity(Vs) profile along the dam axis that can be associated with dynamic properties of filled materials, MASW method was adapted. Then, DC-resistivity survey and drilling survey were performed to compare with each results. We confirmed that the MASW method and DC-resistivity survey show complementary result that corresspond with drilling result. Therefore, MASW method is an efficient method for dynamic characterization of dam-filling materials and also the combination of related methods such as DC-resistivity can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Compressibility of broken rock-fine grain soil mixture

  • Xu, Ming;Song, Erxiang;Cao, Guangxu
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • Due to the enormous amount of fills required, broken rock-fine grain soil mixtures have been increasingly used in the construction of high-fill foundations for airports, railways and highways in the mountain areas of western China. However, the compressibility behavior of those broken rock-fine grain soil mixtures remains unknown, which impose great uncertainties for the performance of those high-fill foundations. In this research, the mixture of broken limestone and a fine grain soil, Douposi soil, is studied. Large oedometer tests have been performed on specimens with different soil content. This research reveals the significant influence of fine grains on the compressibility of the mixture, including immediate settlement, creep, as well as wetting deformation.

A Study on particle crushing of rock-fill material (록필댐 축조재료의 입자파쇄에 대한 연구)

  • Im, Eun-Sang;Snin, Dong-Hoon;Kim, Jea-Hong;Kim, Kwang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1025-1028
    • /
    • 2009
  • Earth and rock fill dam is our typical dam because of their inherent flexibility and adaptability to various fundation conditions. In order to secure structural safety, rockfill materials are used angular particles obtained by blasting parent rock or rounded particles collected from river beds. Concrete-faces rockfill dams(CFRD) and Concrete-faces gravelfill dams(CFGD) have become popular in the last 20 years as s result of their good performance and low cost compared with the rockfill dam. These Dams are also constructed by the materials. A key factor in the design of the dams is the deformations induced during construction and upon reservoir filling. These can be predicted using the stress-strain and strength properties can be adequately define. However the stress-strain properties of rockfill are difficult to determine because the properties are affected by such factors as particle grading, size and shape of particles, stress conditions, and particle crushing. In our study, testing of the behavior of the rockfill materials are essential prerequisites to the realistic analysis and design of the CFGD. This paper deals with laboratory testing of particle crushing among the study.

  • PDF

Seepage Characteristics of Embedded Rock Layer Under the Earth Fill (성토제 하부에 매설된 사석층의 침투특성)

  • Lee Haeng-Woo;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.63-72
    • /
    • 2005
  • Rocks are dumped to soft marine ground in order to improve trafficability and construction conditions in the tideland reclamation construction sites. Though this rock layer under earth fill has caused in a serious seepage problems after construction, seepage behaviors of this embankment structure is not correctly investigated. Water flow through rock layers is, in general, known as Non-Darcy's flow. However, the embedded rock layer under earth fill is not known whether its flow is governed by Darcy's or Non-Darcy's law. Therefore, a numerical analysis, laboratory model test and filed investigations were performed for analyzing the those seepage characteristics in this research. Results show that there is significance of $95\%$ of confidence between observed heads and seepage rates, and the calculated ones by SAMTLE which is developed under the assumption that the water flows through the two-layer system obey the Darcy's flow. And after operating the hydraulic gradient(i) of $0.10\~0.55$ upon laboratory model, these seepage characteristics of the embedded rock layer show that Reynolds Numbers are less than 10 and the relationship between these velocities of rock layer(v) and hydraulic gradients(i) is linearly proportional with more than 0.79 of the coefficient of correlation $(R^2)$. And the Reynolds Number of the velocity calculated by the relation of v=ki in the embedded rock layer of OO sea dike is $1\~6$. It shows also laminar flow. Based on these results, it is concluded that the seepage characteristics of embedded rock layer under earth fill can be laminar and Darcy's flow.