• Title/Summary/Keyword: Rock types

Search Result 812, Processing Time 0.028 seconds

The effect of in-situ stress parameters and metamorphism on the geomechanical and mineralogical behavior of tunnel rocks

  • Kadir Karaman
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • Determination of jointed rock mass properties plays a significant role in the design and construction of underground structures such as tunneling and mining. Rock mass classification systems such as Rock Mass Rating (RMR), Rock Mass Index (RMi), Rock Mass Quality (Q), and deformation modulus (Em) are determined from the jointed rock masses. However, parameters of jointed rock masses can be affected by the tunnel depth below the surface due to the effect of the in situ stresses. In addition, the geomechanical properties of rocks change due to the effect of metamorphism. Therefore, the main objective of this study is to apply correlation analysis to investigate the relationships between rock mass properties and some parameters related to the depth of the tunnel studied. For this purpose, the field work consisted of determining rock mass parameters in a tunnel alignment (~7.1 km) at varying depths from 21 m to 431 m below ground surface. At the same excavation depths, thirty-seven rock types were also sampled and tested in the laboratory. Correlations were made between vertical stress and depth, horizontal/vertical stress ratio (k) and depth, k and Em, k and RMi, k and point load index (PLI), k and Brazilian tensile strength (BTS), Em and uniaxial compressive strength (UCS), UCS and PLI, UCS and BTS. Relationships were significant (significance level=0.000) at the confidence interval of 95% (r = 0.77-0.88) between the data pairs for the rocks taken from depths greater than 166 m where the ratio of horizontal to vertical stress is between 0.6 and 1.2. The in-situ stress parameters affected rock mass properties as well as metamorphism which affected the geomechanical properties of rock materials by affecting the behavior of minerals and textures within rocks. This study revealed that in-situ stress parameters and metamorphism should be reviewed when tunnel studies are carried out.

Evaluation of Support Requirements for the Single Shell Tunnels from the Case Study of Rock Mass Classifications (국내 암반분류 사례를 통한 싱글쉘 터널 지보량 산정 연구)

  • Kim Hak-Joon;Lee Seong-Ho;Shin Hyu-Seong;Bae Gyu-Jin
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.283-291
    • /
    • 2006
  • Shotcrete is used as a permanent lining in single shell tunnels even though shotcrete has been used as a temporary lining in NATM tunnels. Therefore, the accurate evaluation of strength parameters is very crucial because the reliable estimation of loads acting on the shotcretes is necessary to maintain the stability of tunnels. The evaluation of strength parameters of the ground far the single shell tunnels should be investigated to adapt the method in Korea because the geological condition of Korea is different from that of other country. Rock classification and strength parameters obtained from 25 tunnel sites were investigated for this study. Support types fur the different rock classes are suggested for the single shell tunnels in Korea based on the NMT because Q-system has been widely used in Korea. The support types in terms of both Q and RMR values are given based on the correlation of Q and RMR values obtained from the case studies.

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

A Study on the Distribution Patterns of Salix gracilistyla and Phragmites japonica Communities according to Micro-landforms and Substrates of the Stream Corridor (하천 미지형 및 하상저질에 따른 갯버들과 달뿌리풀군락의 분포특성에 관한 연구)

  • 전승훈;현진이;최정권
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.2
    • /
    • pp.58-68
    • /
    • 1999
  • This study was carried out to verify the distribution patterns of Salix gracilistyla and Phragmites japonica communities known as obligatory riparian species according to physical factors such as micro-landforms, substrates, etc., at Soo-ip stream corridor. Firstly four vegetation types - Salix gracilistyla dominant type, Phragmites japonica dominant type, mixed type of two species, and mixed type of two species to other species, were classified by cluster analysis based on UPGMA-Euclidean distance. Also these vegetation types showed many different distribution patterns in response to the longitudinal and lateral view along the stream corridor and substrate composition. Salix gracilistyla was major component of dominant vegetation types developed at attack point of bending reach and on substrates composed of rock fragments, but contrastly Phragmites japonica was most important component of dominant vegetation types at point bar of bending reach and floodplain, and on substrates composed of soil materials. Secondly the species and environment biplot form CCA strongly supported the vegetation types divided by classification. Namely Salix gracilistyla was closely correlated with rock fragments and steep slope, which is resistant to physical action even though located near running water. But Phragmites japonica showed a high correlation with soil particles sedimented at floodplain by divergent flow.

  • PDF

Effect of Step-Wise Excavation Depth on the Earth Pressure against an Excavation Wall in Rock Mass (암반지층 굴착벽체 발생토압에 대한 단계별 굴착깊이의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • This paper examined the effect of step-wise excavation depth on the earth pressure against an excavation wall in rock mass. Numerical parametric studies were conducted based on the Discrete Element Method (DEM) to carry out the problems in rock mass. Controlled parameters included step-wise excavation depth, rock types, and joint conditions (joint shear strength and joint inclination angle). The magnitude and distribution characteristics of the induced earth pressure in a jointed rock mass were investigated and compared with Peck's earth pressure for soil ground. The results showed that the earth pressure against an excavation wall in rock mass were highly affected by different rock and joint conditions, and the effect of step-wise excavation depth increased as a rock type is deteriorated more. In addition, it was found that the earth pressure against an excavation wall in rock mass might be considerably different from Peck's empirical earth pressure for soil ground.

Effect of Rock Mass Condition on the Earth Pressure Against an Excavation Wall in Rock Mass: Numerical Investigation (암반지층 굴착벽체 작용토압에 대한 암반조건의 영향: 수치해석적 조사)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.83-95
    • /
    • 2017
  • This study examined the magnitude and distribution of earth pressure on the excavation wall in jointed rock mass by considering different groundwater conditions under various rock types, joint inclination angles, and earth pressure coefficients. Based on a physical model test (Son and Park, 2014), extended studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the joints characteristics of rock mass. The results showed that the earth pressure was highly influenced by the groundwater condition as well as the rock type, joint inclination angle, and earth pressure coefficient. The results were also compared with Peck's earth pressure for soil ground, and clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground.

Study on bearing characteristic of rock mass with different structures: Physical modeling

  • Zhao, Zhenlong;Jing, Hongwen;Shi, Xinshuai;Yang, Lijun;Yin, Qian;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-194
    • /
    • 2021
  • In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) × 1000 mm (length) × 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.

The effect of jaw's curvature on Brazilian tensile strength of rocks

  • Yousefi, Halime;Fereidooni, Davood
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.165-178
    • /
    • 2020
  • This paper investigates the effect of the jaw's curvature, also known by contact angle and jaw arc central angle (2α), of the Brazilian test apparatus on indirect tensile strength of various rock types. That's why, ten rock samples including limestone, marble, skarn, granite, diorite, and granodiorite were collected from some quarries in different provinces of Iran. Petrographic, mineralogical and textural investigations were performed using thin section analyses. Physical properties of the selected rock samples namely dry and saturated unit weights, porosity, water absorption, and specific gravity were determined for the rock samples. In addition, Brazilian tensile strength at different 2α angles (i.e., 2α = 0°, 10°, 15°, 20°, 45°, and 60°) were determined for the rocks in the laboratory. Results show that the parameter for the rocks is between 3.81 MPa at 2α=0° and 54.76 MPa at 2α=60°. This means that Brazilian tensile strength increased with increasing 2α angle from 0° to 60°. Also, it was found that the highest change rate of the Brazilian tensile strength occurs in range of 2α=15°-30° for most studied rock samples. In some tested samples, the parameter is decreased only at 2α = 60°. The values of Brazilian tensile strength of the rocks tested by flat and standard jaws are near to each other.

Prediction of concrete strength from rock properties at the preliminary design stage

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • This study aims to explore practical and useful equations for rapid evaluation of uniaxial compressive strength of concrete (UCS-C) during the preliminary design stage of aggregate selection. For this purpose, aggregates which were produced from eight different intact rocks were used in the production of concretes. Laboratory experiments involved the tests for uniaxial compressive strength (UCS-R), point load index (PLI-R), P wave velocity (UPV-R), apparent porosity (n-R), unit weight (UW-R) and aggregate impact value (AIV-R) of the rock samples. UCS-C, point load index (PLI-C) and P wave velocity (UPV-C) of concrete samples were also determined. Relationships between UCS-R-rock parameters and UCS-C-concrete parameters were developed by regression analyses. In the simple regression analyses, PLI-C, UPV-C, UCS-R, PLI-R, and UPV-R were found to be statistically significant independent variables to estimate the UCS-C. However, higher coefficients of determination (R2=0.97-1.0) were obtained by multiple regression analyses. The results of simple regression analysis were also compared to the limited number of previous studies. The strength conversion factor (k) values were found to be 14.3 and 14.7 for concrete and rock samples, respectively. It is concluded that the UCS-C can roughly be estimated from derived equations only for the specified rock types.

Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests

  • Chen, Guoqing;Li, Tianbin;Wang, Wei;Guo, Fan;Yin, Hongyu
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • The failure mechanism of a deep hard rock tunnel under high geostress and high geothermalactivity is extremely complex. Uniaxial compression tests of granite at different temperatures were conducted. The complete stress-strain curves, mechanical parameters and macroscopic failure types of the rock were analyzed in detail. The brittleness index, which represents the possibility of a severe brittleness hazard, is proposed in this paperby comparing the peak stress and the expansion stress. The results show that the temperature range from 20 to $60^{\circ}C$ is able to aggravate the brittle failure of hard rock based on the brittleness index. The closure of internal micro cracks by thermal stress can improve the strength of hard rock and the storage capacity of elastic strain energy. The failure mode ofthe samples changes from shear failure to tensile failure as the temperature increases. In conclusion, the brittle failure mechanism of hard rock under the action of thermal coupling is revealed, and the analysis result offers significant guidance for deep buried tunnels at high temperatures and under high geostress.