• Title/Summary/Keyword: Rock reinforcement

Search Result 283, Processing Time 0.023 seconds

Evaluation of High-Viscosity Grouting Injection Perfomance for Reinforcement of Rock Joint in Deep -Depth Tunnels (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 주입 성능 평가)

  • Inkook Yoon;Junho Moon;Younguk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.15-19
    • /
    • 2024
  • This study aimed to develop high-efficiency grouting techniques under deep-depth conditions by experimentally verifying the applicability of various injection materials. Particle size analysis and injection model experiments were conducted with Ordinary Portland Cement (OPC) and Micro Cement (MC) to evaluate the injection performance of each material. Using Barton's Cubic Network theory, the rock fracture spacing was calculated for domestic deep-depth standards, specifically below 40 meters underground. The analysis of particle size passability under selected conditions showed that MC could pass through the rock fracture gaps, while OPC could not. According to the results of the injection model experiments using experimental devices and area calculation software, OPC failed in injection due to its larger particle size, whereas MC was capable of injection even under high-viscosity conditions. Based on these findings, the study quantitatively and visually derived the applicability of grouting materials under deep-depth conditions, and high-viscosity MC material is expected to be effective for waterproofing enhancement in deep-depth rock fracture surfaces.

Types and Characteristics of Landslides in Danyang Geopark (단양 지질공원 내의 산사태 유형과 특징)

  • Seong-Woo Moon;Ho-Geun Kim;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.427-438
    • /
    • 2023
  • We carried out a geological survey to classify the types of mass movement in Danyang Geopark (where various rock types are distributed) and analyzed the mechanical and hydraulic characteristics of landslide materials using a series of laboratory tests. Debris flows occurred in areas of limestone/marble, shale, and porphyroblastic gneiss, and limestone/marble landslides were distinguished from the others through the presence of karren topography. Soil tests showed that soil derived from weathered gneiss, which has a higher proportion of coarse grains, has a higher friction angle, lower cohesion, and larger hydraulic conductivity than soils from areas of limestone/marble, and shale. Rock failure mass movements occurred in areas of phyllite, sandstone, and conglomerate and were subdivided into plane failure, block-fall, and boulder-fall types in areas of phyllite, sandstone, and conglomerate, respectively. The shear strength of phyllite is much lower than that of the other types of rock, which have similar rock quality. The slake durability index of the conglomerate is similar to that of the other rock types, which have similar degrees of weathering, but differential weathering of the matrix and clasts was clearly observed when comparing the samples before and after the test. This study can help establish appropriate reinforcement and disaster prevention measures, which depend on the type of mass movement expected given the geological characteristics of an area.

Experimental study on behavior of the existing tunnel due to adjacent slope excavation in a jointed rock mass (절리암반에서의 근접사면굴착에 의한 기존터널 거동에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • When a rock slope is excavated adjacent to a existing tunnel, the behavior of the existing tunnel in the jointed rock masses is greatly influenced by the joint conditions and slope status. In this study, the effects of joint dip and slope angle close to a tunnel are investigated through a large scale model using a biaxial test equipment ($3.1\;m\;{\times}\;3.1\;m\;{\times}\;0.50\;m$ (width $\times$ height $\times$ length)). The jointed rock masses were built by concrete blocks. The diameter of the modeled tunnel is 0.6 m and the dip angles of joint vary in the range of $0-90^{\circ}$. In addition, the excavated slope angle varies within $30{\sim}90^{\circ}$. Deformational behaviors of the tunnel were analyzed in consideration of joint dip and slope angle. With increase of the joint dip and slope angle, the magnitude of tunnel distortion and the moment of tunnel lining were increased. Rock mass displacement in horizontal was also dependent on the joint dip and the excavated slope angle, which indicated the optimal slope reinforcement for a specific rock mass conditions.

Correlation Analysis of Cutter Acting Force and Temperature During the Linear Cutting Test Accompanied by Infrared Thermography (선형절삭시험과 적외선 열화상 측정을 통한 픽커터 작용력과 발생 온도의 상관관계 분석)

  • Soo-Ho Chang;Tae-Ho Kang;Chulho Lee;Hoyoung Jeong;Soon-Wook Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2023
  • In this study, the linear cutting tests of pick cutters were carried out on a granitic rock with the average compressive strength over 100 MPa. From the tests, the correlation between the cutter acting force and the temperature measured by infrared thermal imaging camera during rock cutting was analyzed. In every experimental condition, the maximum temperature was measured at the rock surface where the chipping occurred, and the temperature generated in the rock was closely correlated with the cutter acting force. On the other hand, the temperature of a pick cutter increased up to only 36℃ above the ambient temperature, and the correlation with the cutter force was not obvious. This can be attributed to the short cutting distance under laboratory conditions and the high thermal conductivity of the tungsten carbide inserts. However, the relatively high temperature of the tungsten carbide inserts was found to be maintained. Therefore, it is recommended that a reinforcement between the insert and the head of a pick cutter or the quality improvement of silvering brazing in the production of a cutter is necessary to maintain the high cutting performance of a pick cutter.

A Study on Vegetated Embankment Slope Reinforcement Using A Synthetic Resine Based Net-hose System (합성수지 소재 네트호스 시스템을 이용한 성토사면 녹화 보강에 대한 연구)

  • Baek, Yong-Gi;Lee, Min-Kyu;Ahn, Jaehun;Oh, Jeongho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.8-13
    • /
    • 2015
  • This study investigates the application of a synthetic resine based net-hose system to sustain vegetated embankment slope reinforcement. The net-hose system is designated to improve water supply to the vegetation that can suffer the lack of water in case of extreme drying condition or rock slope where water supply is relatively insufficient to ensure the growth of vegetation. A series of laboratory tests were conducted to check the structural adequacy and effectiveness of net-hose system. The results indicated that the model slope equipped with net-hose system seemed to provide better water supply resulting in more vegetated areas and higher matric suction due to active water uptake capacity, which might be contributed to greater shear strength of slope surface. A limited numerical analysis was conducted to verify the effect of water uptake on vegetated root system that generally yields better slope stability.

Stability Evaluation and Reinforcement Design Method of the Rock Slope (암반사면 안정성 평가 및 보강설계)

  • 안윤성;김연중
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.343-356
    • /
    • 1994
  • When most of the industry and social indirect facilities such as the large structure, power plant or road, rail-road are constructed, the new slope may lead to the slope failure. The failure models for slopes have been developed by using the results of in-situ and laboratory tests to investigate the mechanisms and types of the slope failure. The safety factor of a slope may be obtained based on the proposed model and the slope can be reinforced to meet the design criteria. The slope should be reinforced by using the optimum model that properly reflects the site condition, the method of reinforcement includes the increased safety factor either by decreasing a slope angle or by reinforcing the slope.

  • PDF

Improvement Effect on Design Parameters by Pressure Grouting Applied on Micro-piling for Slope Reinforcement (가압식 마이크로파일로 보강된 사면의 설계인자 개량효과)

  • Hong, Won-Pyo;Han, Hyun-Hee;Choi, Yong-Ki;Hong, Ik-Pyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.163-170
    • /
    • 2005
  • In this paper, the rock bolts, soil nails with filling grout and the micro-piling with injecting grout by pressure were applied for the stabilization of the cut slopes consisting of sedimentary rocks, igneous rocks and metamorphic rocks respectively. The field measurements and 3-D FEM analyses to find out mobilized tensile stresses of the grouted-reinforcing members installed in the drilled holes were executed on each site. With assuming the increments of the cohesive strength in the improved ground, the back analysis using direct calibration approach of changing the elastic modulus of the ground was used to find out the improved elastic modulus which yields the same tensile stresses from field measurements. The results of back analysis show that the elastic modulus of the improved ground were 4 to 6 times as large as the elastic modulus of original ground. Consequently, the design for slope reinforcement to be more rational, it is proposed that not only the improved cohesive strength is to be used in the incremental ranges on well-known previous proposed data, but also the increased elastic modulus which is about 5 times as large as the original elastic modulus is to be considered in design.

  • PDF

Investigation of the Optimum Injection Pressure in Pressure Grouting by Laboratory Model Tests (모형시험을 통한 지반보강 그라우팅의 적정주입압력 연구)

  • 박종호;박용원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • The ground reinforcement effect of pressure grouting depends on grout penetration into ground. It is not, however, easy to predict the grout penetration in the design process because of the heterogeneity of ground conditions. This study investigates the proper grouting pressure and grouting method through laboratory model tests for pressure grouting using loose to medium dense crushed rock and sandy ground using specially designed and fabricated device. The optimum injection pressure, grout quantity and injection time are investigated through performing pressure grouting under changing conditions of injection in this test. From the test results, it was found that optimum injection pressure covers the range of 3 to 4kg/cm$^2$.

A Study of Stability Analysis for Tunnelling in Fault Zone (단층대 터널굴착시 안정성 확보에 관한 연구)

  • Hong, Chang-Soo;Hwang, Dae-Jin;Lee, Kang-Ho;Lee, Yong-Hun;Lee, Chang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1275-1282
    • /
    • 2005
  • This paper deals with the numerical study for excavation crossing the fault zone and the change of support pattern in field. The numerical analyses by FLAC program were performed to evaluate the suitable support pattern influenced by the width of Fault Zone, considering rock mass condition(RMR classification). Based on the results, it is found that partial reinforcement or degrading support pattern is suitable, when the width of Fault is under 3m. But when the width of Fault is more than 6m(0.5D), extra support pattern for fault zone is acceptable. At field, this result is generally used as a guide in the construction of roadway tunnel, but it is also possible to vary this assessment along the condition of fault.

  • PDF

A Case Study of Correlation between Inflows and Geological Structures around Underground Caverns (지하 유류저장 공동의 지질구조와 공동누수량 상호관계에 관한 사례)

  • 전한석
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2000
  • When caverns are excavated, it is very important to understand the distribution and charateristics of geological structures because the structures have an significant effect on grouting, rock reinforcement, and groundwater flow, etc. The main water bearing fractures have an orientation of N50~60W and these fractures are known as tension fractures. Their orientation coincides with a long elliptical axis ofpumping test, and they cross the tension fractures of N10~30E. They have typical fracture systems ofrhombic type in this area.

  • PDF