• Title/Summary/Keyword: Rock mechanical properties

Search Result 346, Processing Time 0.024 seconds

A Study on Application of Fractal Dimension in Analysis of Damage Mechanics in Rock (암반의 손상역학 해석에 있어서 Fractal차원의 적용에 관한 연구)

  • 정교철;정영기
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.139-151
    • /
    • 1994
  • Rocks are composed of the discrete elements of microstructures such as different grains and microcracks. The studies of these microstructures are of increasing interest in engineering geology and civil engineering related to construction of a deep under-ground space. Accordingly, instead of a simplified continuum approach, discrete structural elements and mechanical properties of various grains must be accounted. But it is difficult to analyse crack and discontinuity surfaces in Euclidean geometry. So, Mandelbrot( 1983) developed fractal theory to manage irregular body in nature. In this study, geometrical properties of microstructures to estimate a relation between crack propagation and stress were calculated. Then it is shown that fractal theory can be applied to research real mechanical behavior of rocks.

  • PDF

Analysis of Ground Behavior applied to the Design of Underground Opening Structures (지하공동구조물의 설계시 적용되는 지반거동해석)

  • 박남서;이성민
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.38-53
    • /
    • 1991
  • The design of underground cavern is basically governed by the mechanical properties of ground mass distributed around excavation. It is seldom possible to consider all the factors of ground mass properties in the evaluation of ground mass behavior as well as to classify those factors to a simple category. Until computer sciences have developed to calculate complex and laborious mechanical simulation of underground openings, ground behavior was quantitatively and qualitatively evaluated using empirical classification system. In this paper, analysis methods of ground behavior for underground cavern using the prediction of loosening zone, empirical method derived from rock mass classification and element stress analysis are described with chronological sequence.

  • PDF

Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests

  • Panaghi, Kamran;Golshani, Aliakbar;Takemura, Takato
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.793-813
    • /
    • 2015
  • Characterization of discontinuous media is an endeavor that poses great challenge to engineers in practice. Since the inherent defects in cracked domains can substantially influence material resistance and govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks along with their impact on the mechanical properties of the intact material. In the present study, stress-strain results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the evaluation of fractured domain stability. It was found that the formulations proposed earlier could satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and compared to the results of the current study. It is concluded that the geometrical parameters calculated using mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked domain.

Design and Performance Evaluation of Tactile Device Using MR Fluid (MR 유체를 이용한 촉감구현장치의 설계 및 성능 평가)

  • Kim, Jin-Kyu;Oh, Jong-Seok;Lee, Snag-Rock;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1220-1226
    • /
    • 2012
  • This paper proposes a novel type of tactile device utilizing magnetorheological(MR) fluid which can be applicable for haptic master of minimally invasive surgery(MIS) robotic system. The salient feature of the controllability of rheological properties by the intensity of the magnetic field(or current) makes this potential candidate of the tactile device. As a first step, an appropriate size of the tactile device is designed and manufactured via magnetic analysis. Secondly, in order to determine proper input magnetic field the repulsive forces of the real body parts such as hand and neck are measured. Subsequently, the repulsive forces of the tactile device are measured by dividing 5 areas. The final step of this work is to obtain desired force in real implementation. Thus, in order to demonstrate this goal a neuro-fuzzy logic is applied to get the desired repulsive force and the error between the desired and actual force is evaluated.

Mechanical behavior of Beishan granite samples with different slenderness ratios at high temperature

  • Zhang, Qiang;Li, Yanjing;Min, Ming;Jiang, Binsong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.157-166
    • /
    • 2021
  • This paper aims at the temperature and slenderness ratio effects on physical and mechanical properties of Beishan granite. A series of uniaxial compression tests with various slenderness ratios and temperatures were carried out, and the acoustic emission signal was also collected. As the temperature increases, the fracture aperture of intercrystalline cracks gradually increases, and obvious transcrystalline cracks occurs when T > 600℃. The failure patterns change from tensile failure mode to ductile failure mode with the increasing temperature. The elastic modulus decreases with the temperature and increases with slenderness ratio, then tends to be a constant value when T = 1000℃. However, the peak strain has the opposite evolution as the elastic modulus under the effects of temperature and slenderness ratio. The uniaxial compression strength (UCS) changes a little for the low-temperature specimens of T < 400℃, but a significant decrease happens when T = 400℃ and 800℃ due to phase transitions of mineral. The evolution denotes that the critical brittle-ductile transition temperature increases with slenderness ratio, and the critical slenderness ratio corresponding to the characteristic mechanical behavior tends to be smaller with the increasing temperature. Additionally, the AE quantity also increases with temperature in an exponential function.

Application of cuttings to estimate the static characteristics of the dolomudstone rocks

  • Rastegarnia, Ahmad;Ghafoori, Mohammad;Moghaddas, Naser Hafezi;Lashkaripour, Gholam Reza;Shojaei, Hassan
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • Determination of strength properties of intact rock using artificial cores has been considered in recent years. In this study, some relationships for estimating the static properties of dolomudstone cores of the Asmari reservoir were presented using artificial cores prepared from cuttings of two wells, southwest of Iran. For this purpose, first natural cuttings (NC) and 33 cores including dolomite limestone (dolomudstone), anhydrite and anhydrite dolomite were prepared between depths of 1714 and 2208 meters. Petrographic, physical, mechanical and dynamic tests were performed on cores, NC and artificial cuttings (AC) which was prepared from the residuals of dolomudstone cores. For preparing the artificial cores, the average porosity of the dolomudstone cores was considered and determined using four methods. Artificial and natural cuttings were classified as dolomite limestone and dolomite limestone to calcareous dolomite, respectively. Using ordinary Portland cement (OPC), water, AC and NC artificial cores were prepared. Results of evaluating the proposed relationships using statistical criteria showed that the static properties of the artificial cores can be used to predict the static properties of the dolomudstone cores.

A study on the asperity degradation of rock joint surfaces using rock-like material specimens (유사 암석 시편을 사용한 암석 절리면 돌출부 손상 연구)

  • Hong, Eun-Soo;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.303-314
    • /
    • 2009
  • Image analyses for sheared joint specimens are performed to study asperity degradation characteristics with respect to the roughness mobilization of rock joints. Four different types of joint specimens, which are made of high-strength gypsum materials, are prepared by replicating the three-dimensional roughness of rock joints. About twenty jointed rock shear tests are performed at various normal stress levels. The characteristic and scale of asperity degradation on the sheared joint specimens are analyzed using the digital image analysis technique. The results show that the asperity degradation characteristic mainly depends on the normal stress level and can be defined by asperity failure and wear. The asperity degradation develops significantly around the peak shear displacement and the average amount of degraded asperities remains constant with further displacement because of new degradation of small scale asperities. The shear strength results using high-strength gypsum materials can not fully represent physical properties of each mineral particles of asperities on the natural rock joint surface. However the results of this quantitative estimation for the relationship between the peak shear displacement and the asperity degradation suggest that the characterization of asperity degradation provides an important insight into mechanical characteristics and shear models of rock joints.

The Inflence of Excavation Damaged Zone around an Underground Research Tunnel in KAERI (한국원자력연구원 내 지하처분연구시설 주변의 암반 손상대 영향 평가)

  • Kwon, S.;Kim, J.S.;Cho, W.J.
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2008
  • The development of an excavation damaged zone, EDZ, due to the blasting impact and stress redistribution after excavation, can influence on the long tenn stability, economy, and safety of the underground excavation. In this study, the size and characteristics of an EDZ around an underground research tunnel, which was excavated by controlled blasting, in KAERI were investigated. The results were implemented into the modelling for evaluating the influence of an EDZ on hydro-mechanical behavior of the tunnel. From in situ tests at KURT, it was possible to determine that the size of EDZ was about l.5rn. Goodman jack tests and laboratory tests showed that the rock properties in the EDZ were changed about 50% compared to the rock properties before blasting. The size and property change in the EDZ were implemented to a hydro-mechanical coupling analysis. In the modeling, rock strengths and elastic modulus were assumed to be decreased 50% and. the hydraulic conductivity was increased 1 order. From the analysis, it was possible to see that the displacement was increased while the stress was decreased because of an EDZ. When an EDZ was considered in the model, the tunnel inflow was increased about 20% compared to the case without an EDZ.

An Experimental Study on the Evaluation of Early-Age Mechanical Properties of Polymer-Based Thin Spray-on Liners (폴리머 기반 박층 라이너의 초기재령 특성 평가를 위한 실험적 연구)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.413-427
    • /
    • 2013
  • Thin Spray-on Liners(TSLs) based on polymer materials have been considered as an alternative to shotcrete and wire mesh in relatively fair rock conditions, and used in mines since 1990s. Nevertheless, Few experimental studies on their mechanical properties necessary for the evaluation of their bearing capacities as a support member have been carried out. In this study, tensile and bond strengths of two kinds of TSLs with different material compositions were measured at the age of 7 days. In addition, two kinds of bending tests proposed by EFNARC (2008) to simulate representative failure mechanisms of TSLs were carried out on the same materials and curing age as in tension and pull-out tests. From the tests, tensile strength of a TSL is shown to increase as its content of polymer is higher. In contrast, its bond strength seems to be in inverse proportion to its polymer content. Especially, the TSL material in which a cementitious component is included with relatively smaller polymer content shows a faster hardening characteristic which results in higher resistance to de-bonding between a TSL and a substrate. As a result, it is shown that the performance of TSLs might be dependent upon its corresponding polymer content.

A Study on the Indexes and Properties of Mechanical Weathering to Granite Distributed in Korea (화강암의 풍화산물에 대한 기계적 풍화지수의 특성에 관한 연구)

  • Rheem, Chong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.99-111
    • /
    • 1993
  • The transformation of rocks into unconsoli-dated debris is the prime geomorphic processes including weathering and soil forming process. In these processes, rocks tend to be unconsol-idated debris with small particles. Particularly, typical granite is more likely affected by weathering, since the rock consists of quartz, feldspar and mica that can be easily coarse-grained and well jointed without bedding. The purposes of this study are to clarify the index and properties of mechanical weathering that contributed to transformation of granite distributed in Korea. A total of seventy-three samples of weathering products of granite in Korea were collected during the three-year period, March 30, 1989 to February 21, 1992. The prticle analysis was performed for clay, silt and sand using Sieve and Hydrometer. The results of the analysis are as the followings: First, soil textures in the study area are included seven categories of textures as C, CL, SCL, Sil, SL, LS, and S. Among these textures, the most frequent soil texture were SL, S and SCL in order. Second, the weathering products of granite are crumbled by weathering and hydrothermal. Clay texture consisted of fine materials seems to be influenced by hydrothermal, while Sand texture composed of coarse materials, seems to be significantly influenced by weathering. Third, the index of mechanical weathering by region indicates that Hawngdeung(1) is the lowest as 2.37 and the index by soil texture shows that Clay texture is the lowest as 2.46. Forth, the regression analysis of MW showes that sand/clay variable is the most significant variable. Finally, pedochemical weathering is prevailed on the clayey gruss and geochemical weathering is on the gruss and shattering is on the weathered rock, strongly, but the fine materials in some sites were formed by argillation of hydrothermal.

  • PDF