• Title/Summary/Keyword: Rock mass classification system

Search Result 72, Processing Time 0.018 seconds

A study on the Correlation Between the Result of Electrical Resistivity Survey and the Rock Mass Classification Values Determined by the Tunnel Face Mapping (전기비저항탐사결과와 터널막장 암반분류의 상관성 검토)

  • Choi, Jai-Hoa;Jo, Churl-Hyun;Ryu, Dong-Woo;Kim, Hoon;Oh, Byung-Sam;Kang, Moon-Gu;Suh, Baek-Soo
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.279-286
    • /
    • 2003
  • Many trials to set up the correlation between the rock mass classification and the earth resistivity have been carried out to design tunnel support type based on the interpreted electrical resistivity acquired by surface electrical survey. But it is hard to find reports on the comparison of the real rock support type determined during the excavation with the electrical resistivity by the inversion of the survey data acquired before the tunneling. In this study, the rock mass classification based on the face mapping data and the resistivity inversion data are investigated to see if it is possible to design reliably the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system and RMR(rock mass rating) are calculated. Since resistivity data has low resolution, Kriging method as a post processing technique which minimizes the estimated variance is used to improve resolution. The result of correlation analysis shows that the 2D electrical resistivity survey is appropriate to see the general trend of the geology in the sense of rock type, though there might be some local area where these two factors do not coincide. But the correlation between the result of 3D survey and the rock mass classification turns out to be very high, and then 3D electrical resistivity survey can make it possible to set up more reliable rock support type.

A Study on Relationship Between RMR and Q System in Rock Mass Classification (암반분류에서 RMR과 Q System의 상관성 분석)

  • 안종필;박주원;박상도
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.737-744
    • /
    • 2000
  • This paper resorts to rock mass rating and rock mass quality to draw value based on the evaluation of rock and to draw interrelation formula in relation to rock mass quality, A comparative analysis was given of survey values reported in the existing documents. This paper has tried to find out the relationship between RMR and Q System for the sake of choosing rational reinforcing patterns and of the safety of tunnels. The results run as follow: RMR=8.251n(Q)+43.83. This paper has also tried to find out the relationship between RMR and Q System by using Fuzzy Approximate Reasoning Concept. We suggest that those in charge should not depend on a single system only after evaluating the classification of rocks, and compare one result with another for the good of keeping track of the condition of base rocks in a better way.

  • PDF

A Study on the Characteristics of Tunnel Based on the Rock Mass Classification (암반분류법에 근거한 터널 특성 연구)

  • Lee Song;Ahn Tae-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • A tunnel that uses the RMR method or the Q-system is called a 'modem tunnel' because the New Austrian Tunneling Method (NATM) is not employed, even though shotcrete and rock bolts are used as support. It is known that the modem tunnel, which is supported by shotcrete, is basically different from the conventional tunnel, which is supported by steel ribs. In order to preserve the load-carrying capacity of the rock mass, loosening and excessive rock deformations must be minimized. Although it is known that this can be achieved by applying shotcrete in the case of the modem tunnel, this has not been clearly demonstrated. In order to inspect the distinctions between the conventional tunnel and the modern tunnel, their support characteristics and the rock loads of the rock mass classifications are compared. Terzaghi's rock load classification was used as the conventional tunnel's representative rock mass classification. The RMR method and the Q-system were adopted as the modem tunnel's representative rock mass classification. The study's results show that the load-carrying capacity of shotcrete, when used as the main support in the modern tunnel, is greater than the load-capacity of the steel ribs used in the conventional tunnel. Because it has been verified that the rock loads of their rock mass classifications are not different, then, according to the rock mass classifications, the load-carrying capacity of the rock mass of the modern tunnel, which uses shotcrete, is not greater than that of the conventional tunnel.

A study on rock mass classification in the design of tunnel using multivariate discriminant analysis (다변량 판별분석을 통한 터널 설계시의 암반분류 연구)

  • Lee, Song;Ahn, Tae Hun;You, Oh Shick
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.237-245
    • /
    • 2004
  • In designing a tunnel, RMR has been widely used to classify rock mass and to decide the support pattern according to the class of rock mass. However, this RMS system can't help relying on the empirical judgment of engineers who use variables which can be obtained only through consideration of the site conditions. In actuality, it is impossible to consider all the rating factors of RMS when using RMR system at the stage of designing. Therefore, in order to confirm possibility of RMR by use of only the quantitative factors for designing, this paper has done discriminant analysis. Rock strength or RQD has high coefficient of correlation with RMR value, and in consideration of the existing standards for rock mass classification, rock intensity and RQD are important factors for classification of rock mass. Through rock mass classification by the existing RMR system and rock mass classification by the discriminant analysis which has considered two variables only, the discriminant analysis using the rock intensity as an independent variable has shown 74.8% accuracy while the discriminant analysis using RQD as an independent variable has shown 74.3% accuracy. In case of the discriminant analysis which has considered both rock intensity and RQD, it has shown 82.5% accuracy. The existing cases have shown 40.3% accuracy at the stage of designing in which all the RMR factors are considered. It means that at the stage of designing, RMR system can work only with the rock intensity and RQD.

  • PDF

A Study on the Characteristics of Rock Mass by GSI in Limestone Mine (석회석 광산에서의 GSI 분류법에 의한 암반특성연구)

  • ;Kaynnam U. M. Rao
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.86-96
    • /
    • 2004
  • Rock mass classification methods such as RMR, Q system and GSl have been widely adopted with certain modifications for the design of mine openings. The GSI system is the only rock mass classification system that is related to Mohr-Coulomb and Hoek-Brown strength parameters and gives a simple method to calculate the engineering properties of rock masses which can be useful input parameters for a numerical analysis. A detailed surveying for GSI mapping as well as far calculating RMR values was undertaken at Daesung and Pyunghae underground limestone mining sites. RQD values were determined for row locations in these two mining sites. Based on GSI values and intact rock strength properties, the rock mass strength modulus of elasticity as well as the Mohr-Coulomb strength parameter c$_{m}$ and $\phi$$_{m}$ were determined. GSI and RMR are correlated.

Study on the stability of tunnel and rock mass classification in Danyang limestone quarry (단양 석회석 광산터널의 암반 평가 및 안정성 연구)

  • ;Choon Sunwoo;Kong Chang Han;yeon-jun Park
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 1996
  • In-situ survey and laboratory rock test were carried out for rating rock mass around the tunnel that some failures had been occurred in Danyang limestone quarry. For rating rock mass, several methods such as RMR, Q-system, rock strength etc. were applied. The stability analysis on tunnel was evaluated by numerical method FLAC. And The block theory using streographic projection was also applied for stability analysis. The 3-4 major discontinuity sets are distributed in rock mass around tunnel.

  • PDF

Empirical Equations for Rock Mass Classifications and Rock Property Evaluations (지반정수산정을 위한 경험적 암반평가기법과 상관성)

  • 신중호;신희순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.79-86
    • /
    • 2002
  • Rock mass classifications form the back bone of the empirical design approach and are widely employed in rock engineering. In this paper the inter-relations were discussed among RMR, Q-system, RCR, N, M-RMR, RMi, and L-RMR. Several relationships for the assessment of the modulus of deformation of rock mass, Poisson's ratio, uniaxial compressive strength, tensile strength, cohesion and internal friction angle were also analysed and suggested.

  • PDF

Comparison of Rock Mass Classification Methods (암반등급 분류법들의 비교연구)

  • Park Chul-Whan;Park Chan;Synn Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.203-208
    • /
    • 2006
  • This report is to introduce an article to compare 3 kinds of methods as RMR, Q-system and RMi published in Tunnel and Tunnelling Technology 2003. As rock mass classification is applied to estimate the amount of the support as an empirical design method, an attempt has been made to evaluate the parameters for classifications and their variations by Professor Nilsen and his team in Norway. Representability and reproducibility in measuring the field parameters are discussed and sensitivity of rating values in the three methods is also analyzed in this research. Although some parameters have high variation in rating among the 5 observers, the rock mass class has been found to be quite similar.

Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran

  • Azarafza, Mohammad;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.571-584
    • /
    • 2017
  • Slope mass rating (SMR) is commonly used for the geomechanical classification of rock masses in an attempt to evaluate the stability of slopes. SMR is calculated from the $RMR_{89-basic}$ (basic rock mass rating) and from the characteristic features of discontinuities, and may be applied to slope stability analysis as well as to slope support recommendations. This study attempts to utilize the SMR classification system for slope stability analysis and to investigate the engineering geological conditions of the slopes and the slope stability analysis of the Gas Flare site in phases 6, 7 and 8 of the South Pars Gas Complex in Assalouyeh, south of Iran. After studying a total of twelve slopes, the results of the SMR classification system indicated that three slope failure modes, namely, wedge, plane and mass failure were possible along the slopes. In addition, the stability analyses conducted by a number of computer programs indicated that three of the slopes were stable, three of the slopes were unstable and the remaining six slopes were categorized as 'needs attention'classes.

Analysis of Acquaintance Relations Between Parameters of RMR and Q Rock Mass Classification System (RMR 및 Q 암반분류법의 평가 요소간 친숙도 관계 분석)

  • Synn, Joong-Ho;Park, Chul-Whan;SunWoo, Choon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.408-417
    • /
    • 2008
  • Rock mass classification methods such as RMR and Q system have different characteristics each other in parameters considered and applications, and so it is very important to prescribe the relationship between parameters for the analysis of correlativity of these methods. With the Held data of RMR and Q estimation in road construction sites, the acquaintance relations between RMR and Q of rock mass classifications are analyzed. The correlation equations between parameters of RMR and Q, matrix of correlation coefficients and the generalized form of acquaintance relation matrix are derived. This acquaintance relation matrix can be further extended to the form of generalized acquaintance relation network, and could be used to analyze the correlativity and to enhance the utility of common rock mass classification methods.