• Title/Summary/Keyword: Rock factor

Search Result 606, Processing Time 0.026 seconds

Analysis of Discontinuity Distribution Property to Predict Rock Slope Failure (암반 사면의 파괴 예측을 위한 불연속면 분포 특성 분석)

  • 윤운상;김정환;배기훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.147-152
    • /
    • 1999
  • Distribution of fracture system is an important factor to analyse instability of jointed rock slope. In the most case of rock slopes, joint distribution properties are related to potential, shape, size and locality of slope failure. The purpose of this paper is to present an application of fracture characterization related to rock slope failure. Fracture data used in this study are collected by scanline survey. Two aspects of fracture characterization for rock slope are handled in this study First, In order to determine the potential and shape of slope failure, trace length of joints is considered as the weighting factor about collected orientation data. Second, Relationship between trace length and spacing is analysed to estimate failure location and size. The distribution of fracture system is directly influenced on wedge failure. It is effective to analyse the orientation of fractures by using weighting factors associated with the trace length of fractures rather than to analyse only that of fractures. It gives a conclusion that the wedge failure occurred along the peak of fracture density(or intensity) cycles.

  • PDF

The estimation of the relaxed rock mass height of a subsea tunnel under the overstressed ground conditions in coupled analysis (과지압 조건에서 해저터널의 연계해석 시 이완하중고 평가 연구)

  • Yoo, Kwang-Ho;Lee, Dong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.716-724
    • /
    • 2008
  • In the case of subsea tunnels, hydro-mechanical coupled analysis is necessary for an exact design and construction. The consideration of the overstretched ground condition is also required because they are usually located at the great depth unlike the usual tunnels. Many researches have been performed on the estimation of relaxed rock mass height. However, there have been no researches on the estimation of relaxed rock mass height under overstretched ground conditions. In this study, therefore, hydro-mechanical coupled analyses were performed under the overstressed ground conditions and the relaxed rock mass heights were estimated based on the contour of the local safety factor around a tunnel.

  • PDF

A study on the stability analysis for asymmetry parallel tunnel with rock pillar (암반 필라를 포함한 비대칭 근접 병설터널의 안정성 평가에 관한 연구)

  • Kim, Do-Sik;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.387-401
    • /
    • 2007
  • Recently, because of the restriction of land for construction and interference of adjacent structure, parallel tunnels with small clearance have been planned and constructed in many sites. In this case, the stability of pillar at center part is very important factor to satisfy the stability of tunnel structure under the construction. In this paper, numerical analyses for the asymmetry parallel tunnels with a narrow width of pillar have been carried out to search for the optimum reinforcement measure for rock pillar and verify the stability of tunnel. Rock pillar between each single tunnel is supposed to be under heavy load by rock mass. The analysis of stress state at rock pillar at various cases for construction conditions is required to investigate the structural behaviour of tunnels and stability of the pillar. Strength-stress ratio is calculated based on the failure theory of rock and the safety factor of tunnel is computed with strength reduction technique. Through these numerical results, reasonable reinforcement measures for rock pillar at parallel tunnel were established and recommended.

  • PDF

An Assessment of Rock Pillar Stability in Tunnel Asymmetric Diverging Area using the Mohr-Coulomb Failure Theory (Mohr-Coulomb 파괴접근도 방법을 이용한 비대칭 분기부 암반필러의 안정성 평가)

  • Lee, Choul-Kyu;Lee, Kang-Il;Kang, Jae-Gi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.17-23
    • /
    • 2016
  • This study assessed the behavior of rock pillar in tunnel asymmetric diverging area by using a three dimensional numerical analysis. The stability of pillar is very important for the ensure the stability of the tunnel asymmetric diverging area. Based on parameters affecting the behavior of rock pillar, this study evaluated different safety factors according to pillar width, depth and rock conditions. It turned out that as the rock pillar width increases, the change curve of safety factors in accordance with depth and rock conditions shows more of the nonlinear behavior. By the assessment of the minimum safety factor, a safety factor chart on the behavior of rock pillar in tunnel asymmetric diverging area was suggested.

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

Tunnel Overbreak Management System Using Overbreak Resistance Factor (여굴저항도를 이용한 터널 발파 여굴 관리 시스템)

  • Jang, Hyongdoo
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • When tunnel is excavated via drilling and blasting, the excessive overbreak is the primary cause of personal or equipment safety hazards and increasing the cost of the tunnel operation owing to additional ground supports such as shotcrete. The practical management of overbreak is extremely difficult due to the complex causative mechanism of it. The study examines the relationship between rock mass characteristics (unsupported face condition, uniaxial compressive strength, face weathering and alteration, discontinuities- frequency, condition and angle between discontinuities and tunnel contour) and the depth of overbreak through using feed-forward artificial neuron networks. Then, Overbreak Resistance Factor (ORF) has been developed based on the weights of rock mass parameters to the overbreak phenomenon. Also, a new concept of tunnel overbreak management system using ORF has been suggested.

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Coupled analysis for the stability estimation of a subsea tunnel in discontinuous rock masses using sensitivity analysis (민감도 분석을 통한 불연속 암반 내의 해저터널의 안정성 평가를 위한 연계해석)

  • You, Kwang-Ho;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.421-430
    • /
    • 2008
  • In discontinuous rock masses, hydraulic-mechanical coupled analyses are required since groundwater flow in joints have a great influence on the stability of a subsea tunnel. In this study, a sensitivity analysis was performed based on coupled analysis to verify the routine which can estimate the safety factor of a tunnel in discontinuous rock mass. To this end, 324 cases of numerical calculations were performed with a commercial program, UDEC-2D. As a result, it was confirmed that the proposed routine for coupled analysis in discontinuous rock mass could give a reasonable result for the estimation of safety factor of a tunnel. Therefore, it is expected that the safety factor estimation method used in this study can be effectively applied for the stability estimation of a subsea tunnel in discontinuous rock masses.

  • PDF

A Study on the Factor of Safety for Rock Slopes Based on Three Dimensional Effects (3차원 효과를 고려한 암반사면의 안전율 변화에 관한 연구)

  • Seo, Og-Geon;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2015
  • In the slope stability analysis and design, Limit Equilibrium Method (LEM) and Shear Strength Reduction technique (SSR) are mainly used. Both methods are able to perform two and three dimensional analysis. SSR is considered to be more sensitive and more reasonable than LEM by many researchers. However, in practice LEM is still widely used because of the increase of analysis time and complexity of the model in SSR. In this study, three dimensional analysis of the protruding rock slope is performed by SSR in order to study the effects of protruding length using rock slope FLAC 3D. In this study, as results of analysis variations of the safety factor have been studied according to slope angle, slope height, the soil strength, protruding slope length projected variables. The results show that the factor of safety as more affected by the shapes of the protruding rock slope than the rock strength.