• 제목/요약/키워드: Rock damage

검색결과 431건 처리시간 0.025초

화강암 공시체의 응력레벨에 따른 투수특성에 대한 연구 (A Study on Permeability Characteristics of Damaged Granite)

  • 김종태;;강미아;정교철
    • 지질공학
    • /
    • 제17권1호
    • /
    • pp.135-142
    • /
    • 2007
  • 토목구조물의 기초가 되는 암반은 암석자체로서는 강도가 높고 투수성이 작지만 공학적 성질은 암반내의 존재하는 크랙, 절리 등 불연속면의 영향을 크게 받는다. 천부 암반내에 지배적으로 분포하는 것은 절리이지만 그 수가 적은 지하심부에 있어서 지하수 투수성의 가능성을 고려하면 암석자체의 미소크랙의 연결성이 투수성 크랙으로서 충분히 고려되어져야 한다. 이 연구에서는 절리성 암반의 절리분포 및 투수성 해석 모델화 방법을 화강암 공시체의 미소크랙에 응용하여 손상진행에 따른 화강암의 투수 특성을 추정하는 것을 목적으로 하였다. 미소크랙 데이터로부터 투수모델을 작성하여 해석한 결과 평균투수계수에 있어서 실제의 투수시험 값과 잘 일치하는 것으로 나타났다. 또한 3차원 모델의 가시화를 가지고 모델표면에서의 미소크랙과의 비교로부터 손상발달에 의한 미소크랙 발생수와 유출면으로부터 계산한 평균투수계수는 비례관계로 실험결과와 잘 일치하는 것으로 해석되었다.

방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측 (Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model)

  • 심영종;조계춘;김홍택
    • 한국지반공학회논문집
    • /
    • 제22권11호
    • /
    • pp.55-64
    • /
    • 2006
  • 터널과 같은 지하 공동 굴착을 위한 발파로 주변에 손상이 발생하였을 경우, 암반의 역학적 및 수리적 불안정성을 유발하기 때문에 암반의 최종손상영역의 예측은 매우 중요하다 그러나 복잡한 발파거동으로 인해 손상영역을 적절히 예측하는 데에는 상당한 어려움이 따르고 있다. 이러한 어려움을 효과적으로 해결하기 위해 발파하중을 응력파와 가스압으로 분리한 많은 연구가 진행되었다. 응력파는 발파공 주위에 분쇄환(crushing annulus)과 파쇄균열대(fracture zone)를 형성시키며, 상당시간 지속되는 준정적인 가스는 파쇄균열대의 닫힌 균열내부에 침투하여 균열을 다시 진행시키는 역할을 하게 된다. 즉, 가스압은 최종적으로 암반에 손상을 가하는데 기여를 한다. 따라서 본 논문은 이러한 가스압에 의해 생성되는 균열의 최종 진행 길이를 예측함으로써 발파로 인한 최종 손상영역을 간단하게 예측할 수 있는 방법을 제시하고자 한다. 이를 위해 균질한 무한 탄성평면에서 발파공 주위에 대칭으로 형성되는 방사균열을 모델로 사용하였다. 이 모델에서 균열이 진행할 수 있는 조건과 가스의 질량이 일정하다는 두 가지 조건을 사용하였다. 그 결과 응력확대계수는 균열이 진행할수록 감소하여 최종균열의 길이를 산정하였으며, 또한 발파공에 작용하는 압력도 감소하는 것을 확인하였다.

Fracture of rock affected by chemical erosion environment

  • Gao, W.;Ge, M.M.
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.373-383
    • /
    • 2016
  • As one natural material, the physical and mechanical properties of rock will be affected very largely by chemical erosion environment. Under chemical environment, the strength of rock will be reduced. Considering the effect of the chemical erosion, fracture factor of rock is reduced. The damage variable is applied to express the change of fracture stress. Therefore, the fracture criterion of rock under chemical environment is constructed. By one experiment of rock fracture under chemical erosion environment, the proposed fracture criterion is verified. The results show that, the fracture path by theory is agree with the testing one well.

태안마애삼존불의 보존과학적 훼손도 진단과 보존환경 분석 (Analysis of Conservation Scientific Deterioration Diagnosis and Conservation Environment of the Samjonbul Carved on Rock Surface in Taean, Korea)

  • 엄두성;전병규;한민수;이장존;송치영
    • 보존과학연구
    • /
    • 통권29호
    • /
    • pp.19-44
    • /
    • 2008
  • Sam-jon-bul or Three Buddha Image Carved on rock surface which is called Sam-jon-bul in Taean, state-designated national treasure No. 307, made in Baek-je Period, has two Buddha images and one Bodhisattva. The detached part of the Sam-jon-bul from wall rock has been attached through conservation treatment in 1995. Few study has been done on weathering condition of petrological point of view and damage while the surface of the Sam-jon-bul has been under serious weathering (relief) of loosing stone particles, and discoloration. In this study, it was made weathering damage maps, which show physical property of the material and state of damage of Sam-jon-bul, in order to dialogize how far the weathering has been done. It has been considered continuing on-site monitoring as necessity when Sam-jon-bul was covered with dew, which may have been caused by change in weather in and out of the protect building. It is necessary to set up detailed conservation plan for it by doing regular diagnosis on the influence of the protect building and weathering of Sam-jon-bul.

  • PDF

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

인체에 대한 진동의 허용 기준 및 피해 산정에 관한 연구 (Vibration Regulations and Damages Evaluation Method for Human)

  • 양형식;전양수;이경운
    • 터널과지하공간
    • /
    • 제7권4호
    • /
    • pp.310-322
    • /
    • 1997
  • New limits of comfort boundary, psychological damage boundary and exposure limit for building residents by continuous and vibration are suggested. These limits are derived from the ISO 2631 and DIN 4150 regulations. A reasonable method to evaluate damages by vibrations is also suggested using the "total over-exposure of vibration" concept.; concept.

  • PDF

Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics

  • Li, Cheng J.;Lou, Pei J.;Xu, Ying
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.365-373
    • /
    • 2022
  • In order to investigate the damage evolution law of rock specimens under cyclic loading, cyclic loading tests under constant loads with different amplitudes were carried out on limestone specimens with high strength and brittleness values using acoustic emission (AE) technology and the energy evolution and AE characteristics were evaluated. Based on dissipated energy density and AE counts, the damage variable of specimen was characterized and two damage evolution processes were analyzed and compared. The obtained results showed that the change of AE counts was closely related to radial deformation. Higher cyclic loading values result in more significant radial strain of limestone specimen and larger accumulative AE counts of cyclic loading segment, which indicated Felicity effect. Regarding dissipated energy density, the damage of limestone specimen was defined without considering the influence of radial deformation, which made the damage value of cyclic loading segment higher at lower amplitude loads. The damage of cyclic loading segment was increased with the magnitude of load. When dissipated energy density was applied to define damage, the damage value at unloading segment was smaller than that of AE counts. Under higher cyclic loading values, rocks show obvious damage during both loading and unloading processes. Therefore, during deep rock excavation, the damages caused by the deformation recovery of unloading rocks could not be ignored when considering the damage caused by abutment pressure.

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao;Liu, Xinrong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.283-296
    • /
    • 2020
  • The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

발파진동으로 인한 조적조 가옥 피해의 임계수준 평가 (Estimation of critical vibration level on structural damage of brick house induced by blasting)

  • 양형식;김남수;전양수;정지문;문승백;조상호
    • 터널과지하공간
    • /
    • 제9권1호
    • /
    • pp.72-77
    • /
    • 1999
  • 구조물의 피해판정을 위하여 환경변화를 감안한 새로운 판정방법을 제안하였다. 농어촌 조적조 가옥에 대한 시험결과, 구조물 피해를 유발하는 발파진동 수준은 허용 발파진동설계를 위한 0.5 kine 보다 10배 이상의 높은 진동수준이었다.

  • PDF