• Title/Summary/Keyword: Rock cracking

Search Result 55, Processing Time 0.02 seconds

Evaluation of Crack Behavior and Climate Monitoring of Ipseok-dae Columnar Joints and Jigong Neodeol Rock Blocks in Mudeungsan National Park (무등산국립공원 입석대 주상절리 및 지공너덜 암괴의 균열 거동과 기후 모니터링 평가)

  • Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.621-630
    • /
    • 2021
  • This study evaluated cracks and climate monitoring in Ipseok-dae columnar joints and Jigong Neodeol rock blocks in Mudeungsan National Park. The rocks' state of cracking and their surface temperatures were measured alongside air temperature, relative humidity, and wind velocity. The maximum crack behavior in Ipseok-dae was 0.367 mm at one point, and showed a slight tendency at other points. One in Jigong Neodeol was within 0.15 mm and showed a stable state with little change. The surface temperature of the Ipseok-dae columnar joints was higher on the side exposed to sunlight than on the shaded side. All blocks of Jigong Neodeol rock showed similar temperatures. The air temperature showed a similar distribution for both rock types. The air temperature showed a similar distribution for both Ipseok-dae and Jigong Neodeol. The relative humidity was mostly between 20% and 60% in Ipseok-dae and was between 20 and 70% in Jigong Neodeol. Both areas had low wind speeds, with maxima of 5 m/s in Ipseok-dae and 3 m/s in Jigong Neodeol. As a result, it is evaluated that crack behavior in Ipseok-dae columnar joints and Jigong Neodeol rock blocks have maintained a very stable state so far. The surface temperature, temperature, relative humidity, and wind velocity of the two areas showed small difference depending on the season, indicating that they were affected to some extent by the season. From a long-term perspective, this can continuously affect the deformation of the Ipseok-dae columnar joints or Jigong Neodeol rock blocks. Therefore, in order to accurately evaluate their stability, it is considered that the current microscopic delamination and exfoliation or the propagation and expansion of cracks should be continuously measured.

A Study on the Construction Specification and Quality Assurance Criteria in Clay Paver (점토바닥벽돌의 품질 및 시공기준 연구)

  • Park, Dae-Gun;Lee, Sang-Yum;Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.111-121
    • /
    • 2010
  • As the customer's interest for sidewalk block in the street or apartment complex is increasing, the materials of block which had been a concrete block exclusively are varied to clay paver, native rock and wood etc. Especially, the sales volume of clay paver which is environment-friendly and ergonomic is dramatically increasing every year with two digits growth rate, however, many problems like "Edge Cracking" "Freezing Breakage" "Bending Breakage" "Joint Gap" are happening frequently within a couple of hours after installation due to the durabilities. Because of the characteristics of Ceramic products, clay pavers are very easy to be broken when they are bumped against each other. In addition, they are relatively fragile by a freezing expansion breakage when exposed to water due to hydrophilic property as well as the intensity and absorptance of the products are varied with small difference from the production process such as production equipment and process control. Therefore, it costs a lot of money to repair the breakdown unless production and installation is carried out according to the strict criteria of the quality control. In this study, the symptoms of breakdown frequently happened in clay paver are classified by each type and finally the solution for this problem in the production of brick, installation and criteria of quality control through compressive strength and absorptance test is suggested.

Expansion Behavior of Aggregate of Korea due to Alkali-Silica Reaction by ASTM C 1260 Method (ASTM C 1260 실험에 의한 국내 골재의 알칼리-실리카 반응 팽창 특성)

  • Yun, Kyong-Ku;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.431-437
    • /
    • 2008
  • The concrete pavement at Seohae Expressway in Korea has suffered from serious distress, only after four to seven years of construction. The deterioration of ASR has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the expansion behavior of aggregates of Korea due to alkali-silica reaction by ASTM C 1260 standard method of the accelerated mortar bar test (AMBT), stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as it follows. The accelerated mortar bar test (AMBT) showed that mica granite and felsite of igneous rocks, aroke, red sandstone and shale of sedimentary rocks, slate of metamorphic rock, and dendrite and quartz of mineral rock showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. The mortar bars, which showed more than occurred 0.1% expansion, resulted in cracking on surface. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe zone against alkali-silica reaction.

Corrosion properties of the 6/4 forged brass for the coupler transferring LPG between tank lorry and LPG station (LPG 충전소와 탱크로리의 가스 이$\cdot$충전 접속장치 커플러용 6/4 단조 황동의 부식특성에 관한 연구)

  • Kil Seong-Hee;Kwon Jeung-Rock;Kim Ji-Yuon;Doh Jung Man
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.14-21
    • /
    • 2001
  • In order to investigate the damage mechanism of the coupler transferring LPG, microstructural observation and chemical analysis of the couplers operated for the long time in the LPG stations and virgin 6/4 forged-brass corrosion-tested were conducted. Their microstructure was consisted of two phases that bright $\beta$ precipitates were irregularly dispersed in $\alpha$ matrix. The chemical compositions of oxide layer on the surface of the used coupler were composed of S, C, O, Al, Si, etc. as well as Cu and Zn. In environmental corrosion tests of both $10\%$ HCl and Mattsson solutions, no apparent deviations in mechanical impact strength of forged-brass was observed. While, in U-bend stress corrosion cracking specimen, some microcracks were observed.

  • PDF

Material Characteristics, Provenance Interpretation and Deterioration Diagnosis of Shilla Stone Monuments in Jungseongri and Naengsuri, Pohang (포항 중성리신라비와 영일 냉수리신라비의 재질특성과 산지해석 및 훼손도 진단)

  • Lee, Myeong Seong;Han, Min Su;Kim, Jae Hwan;Kim, Sa Dug
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.122-143
    • /
    • 2010
  • The Shilla Stone Monument in Jungseongri was found during the road-construction in Pohang. It has approximately two hundreds of letters inscribed on the surface of one side, and it is estimated to be older than Shilla Stone Monument in Naengsuri which had been known for the oldest stele in Shilla Period. This monument is made of fine to medium-grained biotite granite, while the Shilla Stone Monument in Naengsuri is made of fine-grained granodioritic porphyry bearing feldspar and amphibole phenocrysts. Both rock types of the monuments are interpreted to be cognate with biotite granite in Shinkwangmyeon, and with granodioritic porphyry in Gigyemyeon. They are characterized by xenolith and miarolitic cavity. Damage aspects in both monuments are discoloring, cracking and breaking. These damages do not cause structural instability of the monuments, but attenuate aesthetic value. Black and brown discoloring contaminants on the surface of the Jungseongri Monument contain a high amount of manganese and iron. As a result of ultrasonic test, both monuments were evaluated to be medium-weathered (MW), although the velocity of the Shilla Monument in Jungseongri was slightly lower than the Shilla Monument in Naengsuri. This is because the Monument in Juengseongri had been exposed to outdoor environment for long time until the discovery. It is necessary for Shilla Monuments to be protected by appropriately environmental control and management.