• Title/Summary/Keyword: Rock blasting

Search Result 435, Processing Time 0.021 seconds

Construction Planning and Design of a Long Tunnel (장대 터널의 계획과 설계)

  • 장석부;윤영훈;김용일;김진한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.117-124
    • /
    • 2000
  • This paper presents the construction planning and the detail design of a 16.2 km long railroad tunnel in a mountainous area. Major design conditions for railroad are the single track, loop-typed alinement, and a maximum grade of 24.5$\textperthousand$. A underground station(double track) with a length of 1.1km is located in the middle of the line for train cross-passing. Tunnel is excavated in highly complex geological conditions including faulted areas, abandoned mine works areas, and various rock types such as sandstone, shale, limestone, and coal seam partly. Drilling and blasting method was adopted because it is more flexible than TBM(Tunnel Boring Machine) as a result of risk assessment for geological conditions in this area. Two working adits were planned to adjust the construction schedule and can be used for ventilation and maintenance in operation phase. New material and concept were introduced to the tunnel drain design. They are expected to improve tunnel drain condition and capability. Rational tunnel support design was tried to consider the various tunnel size and purpose and to use the geological investigation results.

  • PDF

Measurements and Analysis of Vibration on Construction Site (공사현장에서 발생하는 진동 측정 및 영향 분석)

  • Moon, Ka-Eun;Rhim, Hong-Chul;Jeong, Byung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.3-4
    • /
    • 2015
  • Vibration occur at construction sites due to various causes. Starting from the movement of heavy equipments and construction vehicles, the machine crushing of embedded obstacles and rocks creates not only noise but also vibration. Furthermore, the blasting of rocks tops the other causes. In this paper, the measurements of various vibration occurring at the construction site are made and analyzed to determine the magnitude of vibration upon different sources of vibration. The results showed the relative magnitude of vibration for the site studied.

  • PDF

The Reliability of Blast Vibration Equation (발파 진동식의 신뢰성)

  • Kim, Soo Il;Jeong, Sang Seom;Cho, Hoo Youn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.573-582
    • /
    • 1994
  • Blast vibration equations proposed previously are investigated. Special attention is given to the blast vibration equation which shows the best fitting to the geologic condition of Korea. The fittness of proposed blast vibration equation is analyzed and examined using many field data measured in Korea. The prediction of blast vibration equation using field data was performed by linear regression analysis. Moreover, after the prediction of each blast vibration equation, vibration velocity is recalculated on the basis of scaled distance at each equation. Reliability of regressioned blast vibration equation is observed by comparing predicted and measured velocity, which is divided into small-scale blasting of city and large-scale blasting of quarry. Based on this study, the best fitting equation to the Korean geologic condition is ROOT SCALING & CUBE ROOT SCALING proposed by USBM(United Nations Bureau of Mines). Also representative blast vibration equations depending on the different kinds of rock mass are proposed using measured and existing field data.

  • PDF

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.

Study on Establishing a Blast Guideline for Securing an Underground Crusher Room from Ground Vibrations (지하 조쇄실의 진동 안정성 확보를 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Kim, Hyun-Woo;Kang, Myoung-Soo
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.15-24
    • /
    • 2015
  • In general, blast vibrations could make underground cavern unstable by causing relative movements between the surrounding rock blocks that are divided by discontinuities such as joints and faults around the cavern. In the study, a blast guideline was established to obtain the stability of a large-scale cavern for underground crusher room in an open pit limestone mine in Korea. The guideline was suggested in the form of a standard calculation method of the maximum charge per delay for a safe blast. The allowable level of peak particle velocity for the cavern was determined based on the result of a numerical analysis using FLAC2D. The ground vibration data required for the study was obtained from field measurements.

A Study on Development of Shotcrete Material using Fly Ash (Fly Ash을 이용한 Shotcrete 재료의 개발에 관한 연구)

  • 한오형;강추원
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • Currently, the shotcrete used as basic support in the tunnel excavation, has the advantages of maintaining high-level strength in condition of early shooting with thin thickness based on the excavation characteristics of rock mass. Therefore supreme equipment and materials were developed and the great strides have continued. Also, the development of measurement technology and the rocks behaviors of undergound are evaluated in detail and the designs of strength and thickness are made. The reinforcement materials development of new material is carried on. Most of the coal fly ash produced in Korea fire power plant is fly ash and bottom mash. Fly ash has been producing to be applied in many fields such as cement, aggregate, construction, civil, agriculture and fisheries. Also a lot of experiments are actively on the way. Therefore in this experiment, in order to use the fly ash mixed with concrete as a material of shotcrete, the experiment was performed in the best content to reduce the compression strength and the shooting rebound ratio of the excavated surface to use fly ash as a substitute material of concrete. As a result, when 15%.wt substitution was made to the fly ash, about 10% of compression strength and 6% of rebound ratio was reduced.

The design of outlet in inter-cross slope with tunnel which it applied forming artificial ground (인공지반을 적용한 사교하는 사면에서의 터널 갱구부 설계)

  • Park, Chal-Sook;Kwan, Han;Lee, Kyu-Tak;Kim, Bong-Jae;Yun, Yong-Jin;Kim, Kwang-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1532-1548
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. The tunnel outlet was planned to be made after installing slope stabilization system on natural slope there. Generally, the tunnel outlet is made perpendicularly to the slope, but in this case, it had to be made obliquely to the slope for not interrupting flow of river. Because of excavation in condition of natural slope caused to deflecting earth pressure, the outlet couldn't be made. So, artificial ground made with concrete that it was constructed in the outside of tunnel for producing the arching effect which enables to make a outlet. We were planned tunnel excavation was carried out after artificial ground made. Artificial ground made by poor mix concrete of which it was planned that the thickness was at least 3.0m height from outside of tunnel lining and 30cm of height per pouring. Spreading and compaction was planned utilized weight of 15 ton roller machine. In order to access of working truck, slope of artificial ground was designed 1:1.0 and applied 2% slope in upper pert of it for easily drainage of water. In addition to, upper pert of artificial ground was covered with soil, because of impaction of rock fall from upper slope was made minimum. The tunnel excavation of the artificial ground was designed application with special blasting method that it was Super Wedge and control blasting utilized with pre-percussion hole.

  • PDF

An Evaluation of the Influence of a Mixed Gas Explosion on the Stability of an Underground Excavation (혼합 가스폭발이 지하구조물 안정성에 미치는 영향 평가)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.1-15
    • /
    • 2020
  • With the increase of the utilization of underground space in Korea, explosion accidents at the underground facilities such as gas pipes have occurred frequently. In urban area with high population density, individual explosion accidents are likely to spread into large complex accidents. It is necessary to investigate the effect of explosion on the stability of underground structures in urban area. In this study, a sensitivity analysis was carried out to investigate the possible influence of nearby explosion on the stability of underground structure with 8 parameters including explosion conditions and rock properties. From the sensitivity analysis using AUTODYN, the main and interaction effects of each parameters could be determined. From the analysis, it was found that the distance between explosion point and tunnel, charge weight, and Young's modulus are the most important parameters on the stress components around a tunnel.

Microplane Constitutive Model for Granite and Analysis of Its Behavior (마이크로플레인 모델을 이용한 화강암의 3차원 구성방정식 개발 및 암석거동 모사)

  • Zi Goangseup;Moon Sang-Mo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.41-53
    • /
    • 2006
  • The brittle materials like rocks show complicated strain-softening behavior after the peak which is hard to model using the classical constitutive models based on the relation between strain and stress tensors. A kinematically constrained three-dimensional microplane constitutive model is developed for granite. The model is verified by fitting the experimented data of Westerly granite and Bonnet granite. The triaxial behavior of granite is well reproduced by the model as well as the uniaxial behavior. We studied the development of the fracture zone in granite during blasting impact using the model with the standard finite element method. All the results obtained from the microplane model developed are compared to those from the linear elasticity model which is commonly used in many researches and practices. It is found that the nonlinearity of rocks sigificantly affects the results of analysis.

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.