• Title/Summary/Keyword: Rock blasting

Search Result 435, Processing Time 0.02 seconds

Numerical Analysis on Controlled Tunnel Blasting by Heck Charge (다단 장약에 의한 터널 진동제어 발파의 수치해석)

  • 양형식;두준기;조상호;김원범
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2003
  • Controlled tunnel blasting by deck charge was suggested and simulated by PFC and FEM analyses. Analyzed results showed that suggested method is efficient in fragmentation and able to decrease in vibration level because of decreased amount of charge per delay and dispersion of deck charge. This phenomena was explained by failure mechanism and proved that it can be successfully applied to tunnel blasting.

Detonating Cord as a Controllable Source for Scaled Model Blasting Test (축소모형실험 폭원으로서 도폭선의 폭력조절)

  • Yang, Hyung-Sik;Kim, Jong-Gwan;Choi, Mi-Jin;Choi, Byung-Hee;Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.295-300
    • /
    • 2007
  • A method using detonating cord was suggested to control the blasting source for scaled model test. Blasting of 5 concrete block was carried out to verify the method. It was proved that blasting power can be controlled by suggested method. It seemed to be reasonable to use the reduction ratio based on the explosion heat.

Analysis of Ground Vibration due to Demolition (구조물 발파해체로 인한 지반진동의 해석 연구)

  • Kim, Seung-Kon;Park, Hoon;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.210-219
    • /
    • 2002
  • In the ground vibration due to demolition blasting vibration and impact vibration of collapsed structure are separated. In this paper, model structures were collapsed by blasting with different charge locations. Ground vibrations were measured and separated as blasting and impact vibrations by waveform and dominant frequency. Vibration characteristics of different charge locations were examined.

Case Study of Blasting Pattern Design for Tunnelling in Which Considered Blast Induced Vibration Affected Across Buildings (터널 굴착 시 주변 구조물에 미치는 영향을 고려한 발파 설계 사례)

  • Baek, Seung-Kyu;Choo, Seok-Yeon;Yoon, Jong-O;Baek, Un-Il;Park, Hyung-Seop
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.377-386
    • /
    • 2006
  • In generally blasting pattern design is carried out in-situ borehole blasting test and its analysis. We added the 3D numerical analysis for blast induced vibrations. This paper is case study of 3D numerical analysis in which considered blast induced vibration affected across buildings, and then we design the blasting pattern of tunnel excavation.

A study on characteristics of blast vibration waveform by vibration time history analysis (진동이력분석을 응용한 발파 진동파형의 특성에 관한 연구)

  • 김진수;임한욱
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.36-47
    • /
    • 1999
  • For cautious controlled blasting, it is necessary to understand characteristics of the blasting vibration. In this study, a series of tests were carried out to investigate the several characteristics of blasting vibration waveform by vibration time history analysis. Separation between impulse vibration and free vibration from blasting vibration, duration time, effects of overlap of free vibration upon the level of vibration and changes of waveform according to increase of charge weight per delay etc. were studied with waveform analysis.

  • PDF

Numerical Modeling of the Detonation of Explosives Using Hydrodynamics Codes (유체 동역학 코드를 이용한 화약의 폭발과정에 대한 수치 모델링)

  • Park, Dohyun;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • The hydrodynamics code is a numerical tool developed for modeling high velocity impacts where the materials are assumed to behave like fluids. The hydrodynamics code is widely used for solving impact problems, such as rock blasting using explosives. For a realistic simulation of rock blasting, it is necessary to model explosives numerically so that the interaction problem between rock and explosives can be solved in a fully coupled manner. The equation of state of explosives, which describes the state of the material under given physical conditions, should be established. In this paper, we introduced the hydrodynamics code used for explosion process modeling, the equation of state of explosives, and the determination of associated parameters.

A Study on the Determination of Suitable Specific Charge in Tunnel Blasting Design (터널발파설계에서 적정장약량산정에 관한 연구)

  • Jeong, Dong-Ho;Kim, Seon-Hong;Bae, Hyo-Jin;Seok, Jin-Ho;Choo, Yong-Beom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Till now a lot of studies has been performed to increase the efficiency of tunnel blasting. Nevertheless there are still uncertainties of input parameter to determine the specific charge. In order to solve this problem, the rock types and the charges of 17 road tunnel sites were analyzed. As a result of these analyses an empirical formula depending on rock type and charge was developed. Through this formula rational tunnel blasting will be designed by quantitative method rather than by assumption.

  • PDF

Numerical Study on the Crack-propagation Controlling in Blasting Using Notched Charge Hole (노치 장약공을 이용한 발파균열제어에 관한 수치해석적 연구)

  • Cho, Sang-Ho;Park, Seung-Hwan;Kim, Kwang-Yeom;Nakamura, Yuichi;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • Mechanical excavation techniques employing tunnel boring machines (TBM) and rock splitters have been proposed to minimize rock damage for tunnel and underground waste repository facilities. Such a mechanical excavation, however, is extremely expensive and not applicable in all cases. For these reasons, controlled blasting using notched charge holes have been suggested to achieve crack growth along specific directions and inhibit growth along other directions. This study introduces a dynamic fracture process analysis code to simulate fracture processes of rock which has a notched charge hole.

Numerical Study for Prediction of Rock Falls Around Jointed Limestone Underground Opening due to Blast Vibration (발파진동에 의한 절리암반 지하공동의 낙석발생 예측에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.10-16
    • /
    • 2016
  • Recently, transition from open pit to underground mining in limestone mines is an increasing trend in Korea due to environmental issues such as noise, dust and vibrations caused by crushers and equipment. The severe damages in the surrounding rock mass of underground opening caused by explosive blasting may lead to rock fall hazards or casualties. It is well known that variables which mainly affect blast-induced rock falls in underground mining are: blast vibration level, joint orientation and distribution and shape of the cross sections of underground structures. In this study, UDEC program, which is a DEM code, is used to simulate blast vibration-induced rock fall in underground openings. Variation of joint space, joint angle and joint normal stiffness was considered to investigate the effect of joint characteristics on the blast vibration-induced rock fall in underground opening. Finally, jointed rock mass models considering blast-induced damage zone were examined to simulate the critical blast vibration value which may cause rock falls in underground opening.

The optimal control methods to reduce the environmental hazards surrounding the YoungNam Uni. Rotary of City Taegu constructing Subway Line No.1 (대구 지하철 구간내 선형 변동에 따른 소음 및 진동 저감 방안 연구)

  • 지왕률;최재진;강상수;강대우
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.116-129
    • /
    • 1997
  • The objective of this study is to predict the minimization effect of the noise and vibration during the construction and the train operation regarding to the design modification of the Taegu Subway Line No. 1. It was suggested optimal control blasting methods to reduce the causing vibration Nuance to the resident in City Taegu and also proposed the better governing method to decrease the environmental hazard to the near buildings and residents during the train operation. When the high-density gaseous reaction of explosion products exerts a high pressure in motion outward, a dynamic stress field will be created in the surrounding buildings. Therefore, in the region close to the charge, permanent damage begins to occur at a great critical level of partial velocity, that is difficult from different structure as working conditions. It is reliable to predict that the damages could be reduced if we know the peak velocity and the exact reasons through the conducting of detail studies of structural analysis of the related buildings with the optimal blasting designs. A blasting technique should be deemed to take advantage of the reduction of damage of the surrounding rocks and structures to improve the in-city blasting. This is a typical in-city blasting operation where success depends on closely controlling the ground vibrations in case of better designed blasting methods. There are techniques that can be applied to prevent large vibrations from damaging the important buildings through the Route Modification of the Taegu Subway Line No. 1.

  • PDF