• Title/Summary/Keyword: Rock Mass Rating

Search Result 82, Processing Time 0.021 seconds

Application of geophysical well logging to fracture identification and determination of in-situ dynamic elastic constants. (물리검층에 의한 파쇄대 인식과 동적 지반정수의 산출)

  • Hwang, Se-Ho;Lee, Sang-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.156-175
    • /
    • 1999
  • Recently the application of geophysical well logging to geotechnical site investigation is increasing, because the merit that geophysical logs provide the high resolution and in-situ physical properties in volumes of rock surrounding the borehole. Geophysical well logs are used to identify lithologic boundaries and fracture, to determine the physical properties of rock(i.e., density, velocity etc.), and to detect permeable fracture zones that could be conduits for ground water movement through the rocks. The principle of heat-pulse meter, the calibration of gamma-gamma logging, and principles and data processing of full waveform sonic logging are briefly reviewed, and the case studies of geophysical logs are discussed. Correlation between velocity by sonic logging and rock mass classification such as RMR(Rock Mass Rating) value is considered.

  • PDF

Optimal Estimation of Rock Mass Properties Using Genetic Algorithm (유전알고리즘을 이용한 암반 물성의 최적 평가에 관한 연구)

  • Hong Changwoo;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.129-136
    • /
    • 2005
  • This paper describes the implementation of rock mass rating evaluation based on genetic algorithm(GA) and conditional simulation technique to estimate RMR in the area without sufficient borehole data RMR were estimated by GA and conditional simulation technique with reflecting distribution feature and spatial correlation. And RMR determined by GA were compared with the results from kriging. Through the analysis of the results from 30 simulations, the uncertainty of estimation could be quantified.

Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis

  • Kim, Dohyun;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-335
    • /
    • 2021
  • This paper aims to estimate the range of the excavation damaged zone (EDZ) formation caused by the tunnel boring machine (TBM) advancement through dynamic three-dimensional large deformation finite element analysis. Large deformation analysis based on Coupled Eulerian-Lagrangian (CEL) analysis is used to accurately simulate the behavior during TBM excavation. The analysis model is verified based on numerous test results reported in the literature. The range of the formed EDZ will be suggested as a boundary under various conditions - different tunnel diameter, tunnel depth, and rock type. Moreover, evaluation of the integrity of the tunnel structure during excavation has been carried out. Based on the numerical results, the apparent boundary of the EDZ is shown to within the range of 0.7D (D: tunnel diameter) around the excavation surface. Through series of numerical computation, it is clear that for the rock of with higher rock mass rating (RMR) grade (close to 1st grade), the EDZ around the tunnel tends to increase. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional to the magnitude of the EDZ. However, the relationship between the formation of the EDZ and the stability of the tunnel was not found to be consistent. In case where the TBM excavation is carried out in hard rock or rock under high confinement (excavation under greater depth), large range of the EDZ may be formed, but less strain occurs along the excavation surface during excavation and is found to be more stable.

Rock Mass Rating for Korean Tunnels Using Artificial Neural Network (인공신경망을 이용한 한국형 터널 암반분류)

  • 양형식;김재철
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.214-220
    • /
    • 1999
  • In this study, the validity of items of RMR system is evaluated and the applicability of this system to the data measured in Korean sites if discussed. Database was constructed from 139 sites, which are composed of subways, railway tunnels and road tunnels. These sites are located nationwide. Analysis shows that original classification of Bieniawski is valid although it was derived empirically. But it has considerable rating difference (error) in the result of Korean application. Thus new classification systems of KRMRI and KRMR2 are suggested, which are deduced from the Korean database. The former includes adjusted ratings and the latter adopts two more items. These are deduced by artificial neural network because it is difficult to select \`characteristic value'to estimate rock quality.

  • PDF

Rock Mechanics Modeling of the Site for the 2nd Step Construction of the KAERI Underground Research Tunnel (KURT) (KURT 2단계 건설부지에 대한 암석역학모델 설정)

  • Jang, Hyun-Sic;Ko, Chi-Hye;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.247-260
    • /
    • 2014
  • Rock masses at the site for the $2^{nd}$ step construction of the KAERI Underground Research Tunnel (KURT) are divided into six units to establish a rock mechanics model that is dependent on the geological characteristics and degree of joint development. The site primarily consists of three granitic units (G1, G2, and G3), two dykes (D1 and D3), and a fault zone of poor rock mass quality (F3). The F3 unit crosses the tunnel at the beginning of the site of $2^{nd}$ step construction. The rock masses of each unit are classified by RMR (Rock Mass Rating), Q-system, and RMi (Rock Mass Index), all based on borehole logging data. The deformation modulus, rock mass strength, cohesion, and friction angle for each unit are calculated using established empirical relationships. The representative rock mass classification and geotechnical parameters for the rock mass units are established, and a rock mechanics model for the site is proposed, which will be useful in the design and stability analysis of the $2^{nd}$ step construction of KURT.

Suggestion of New Rock Classification Method Using the Existing Classification Method (기존의 암반분류법의 조합에 의한 새로운 암반평가법의 제안)

  • SunWoo Choon;Jung Yong-Bok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Rock mass classification systems such as RMR and Q system have been widely served as a simple empirical approach for the design of various rock mass structures in the stage of site survey as well as under the construction. For the RQD determination, the boring is partially carried out and what is more, the survey boring is not normally carried out under construction. Therefore RQD is frequently determined by empirical method or indirect method. Since it is difficult to determine the discontinuity characteristics such as RQD, spacing, persistence, filling and so on, it is essential to develop suitable and simple systems without drilled core and a cert 없 n number of representative parameters. One of the primary objectives of the classification systems for a practicing engineer has been to make it simple to use as a preliminary design tool for the structures in rock mass. In the present study, the modifications for both the RMR and GSI system are suggested by authors to introduce new classification system as well as to improve the scope of some of the existing classification systems for a practicing engineer.

Suggestion of a Modified RMR based on Effect of RMR Parameters on Tunnel Displacement in Sedimentary Rocks (퇴적암 기반 터널에서의 지질인자별 변위 영향도를 고려한 RMR 수정 제안)

  • Seo, Yong-Seok;Yim, Sung-Bin;Na, Jong-Hwa;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2008
  • Total displacement under non-reinforcement is a quantitative index of rock mass behavior during tunnel excavation and depends widely upon geological characteristics. The primary purpose of this study is to suggest a rock mass evaluation method, well representing tunnel behavior during excavation, according to rock type. A 3-D numerical analysis was carried out, with consideration of the shape of tunnel section, excavation condition and so forth, in a sedimentary rock-based tunnel, and total displacements under non-reinforcement according to rock mass class were calculated. Finally, quantification analysis was carried out to assess correlation of the total displacement with RMR parameters. As the result, a modified RMR system fer quantification of rock mass behavior during tunnel excavation is suggested.

Introduction of Q-slope and its Application Case in a Open Pit Coal Mine (Q-slope의 소개와 노천채탄장에서의 적용 사례)

  • Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.305-317
    • /
    • 2019
  • The RMR and Q-system for characterizing rock mass and drilling core, and for estimating the support and reinforcement measures in mine galleries, tunnels and caverns have been widely used by engineers. SMR has been widely used in the rock mass classification for rock slope, but Q-Slope has been introduced into slopes since 2015. In the last ten years, a modified Q-system called Q-slope has been tested by the many authors for application to the benches in open pit mines and excavated road rock slopes. The results have shown that a simple correlation exists between Q-slope values and the long-term stable and unsupported slope angles. Just as RMR and Q have been used together in a tunnel or underground space and complemented by comparison, Q-Slope can be used in parallel with SMR. This paper introduces how to use Q-Slope which has not been announced in Korea and application examples of Pasir open pit coal mine in Indonesia.

A study on rock mass classification in the design of tunnel using multivariate discriminant analysis (다변량 판별분석을 통한 터널 설계시의 암반분류 연구)

  • Lee, Song;Ahn, Tae Hun;You, Oh Shick
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.237-245
    • /
    • 2004
  • In designing a tunnel, RMR has been widely used to classify rock mass and to decide the support pattern according to the class of rock mass. However, this RMS system can't help relying on the empirical judgment of engineers who use variables which can be obtained only through consideration of the site conditions. In actuality, it is impossible to consider all the rating factors of RMS when using RMR system at the stage of designing. Therefore, in order to confirm possibility of RMR by use of only the quantitative factors for designing, this paper has done discriminant analysis. Rock strength or RQD has high coefficient of correlation with RMR value, and in consideration of the existing standards for rock mass classification, rock intensity and RQD are important factors for classification of rock mass. Through rock mass classification by the existing RMR system and rock mass classification by the discriminant analysis which has considered two variables only, the discriminant analysis using the rock intensity as an independent variable has shown 74.8% accuracy while the discriminant analysis using RQD as an independent variable has shown 74.3% accuracy. In case of the discriminant analysis which has considered both rock intensity and RQD, it has shown 82.5% accuracy. The existing cases have shown 40.3% accuracy at the stage of designing in which all the RMR factors are considered. It means that at the stage of designing, RMR system can work only with the rock intensity and RQD.

  • PDF

A Geostatisitical Study Using Qualitative Information for Multiple Rock Classification II. Application (다분적 암반분류를 위한 정성적 자료의 지구통계학적 연구- II. 응용)

  • 유광호
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • The application of a multiple rock classification method, which is a generalization of a binary rock classification, is studied in this paper. In particular, this paper shows how to incorporate qualitative data through a case study. The method suggested in this paper can be effectively used for a systematic multiple rock classification such as RMR system developed by Bieniawski. It will be very useful for rock classifications. In addition, it is known that the expected cost of errors can be atopted to indicate how well a investigation plan is made.

  • PDF