• Title/Summary/Keyword: Rock Cavern

Search Result 157, Processing Time 0.02 seconds

Guideline for the Diagnose of Geotechnical Structure (Underground Oil Storage Cavern) using a Microseismic Monitoring System (음향미소진동기반 모니터링 시스템을 이용한 지반구조물(유류 지하저장시설) 진단평가 가이드라인)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.293-303
    • /
    • 2018
  • Monitoring is the act of collecting and analyzing accurate engineering information using various methods and instruments. The purposes of the monitoring are design verification, construction management, quality control, safety management, and diagnose of structure etc.. The diagnose evaluation of the geotechnical structures corresponds to the confirmation of the structural performance. It is aimed to judge the soundness of geotechnical structures considering the degree of damage due to the environmental change and elapsed time. Recently, microseismicity, which is widely known in Korea, can be used for safety management and diagnoses of structure as it detects the micro-damage without disturbance of the structure. This report provides guideline on the procedure for assessing an underground oil storage cavern using microseismic monitoring techniques. Guidelines cover the selection of monitoring systems, sensor array, sensor installation and operation of systems, and interpretation.

Investigation of ground condition charges due to cryogenic conditions in an underground LNG storage plant (지하 LNG 저장 시험장에서 극저온 환경에 의한 지반상태 변화의 규명)

  • Yi Myeong-Jong;Kim Jung-Ho;Park Sam-Gyu;Son Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To investigate the feasibility of a new concept of storing Liquefied Natural Gas (LNG) in a lined hard rock cavern, and to develop essential technologies for constructing underground LNG storage facilities, a small pilot plant storing liquid nitrogen (LN2) has been constructed at the Korea Institute of Geoscience and Mineral Resources (KIGAM). The LN2 stored in the cavern will subject the host rock around the cavern to very low temperatures, which is expected to cause the development of an ice ring and the change of ground condition around the storage cavern. To investigate and monitor changes in ground conditions at this pilot plant site, geophysical, hydrogeological, and rock mechanical investigations were carried out. In particular, geophysical methods including borehole radar and three-dimensional (3D) resistivity surveys were used to identify and monitor the development of an ice ring, and other possible changes in ground conditions resulting from the very low temperature of LN2 in the storage tank. We acquired 3D resistivity data before and after storing the LN2, and the results were compared. From the 3D images obtained during the three phases of the resistivity monitoring survey, we delineated zones of distinct resistivity changes that are closely related to the storage of LN2. In these results, we observed a decrease in resistivity at the eastern part of the storage cavern. Comparing the hydrogeological data and Joint patterns around the storage cavern, we interpret this change in resistivity to result from changes in the groundwater flow pattern. Freezing of the host rock by the very low temperature of LN2 causes a drastic change in the hydrogeological conditions and groundwater flow patterns in this pilot plant.

The Impulsive Analysis of the Cavern in Saturated Rock Mass (포화된 암반체에 위치한 공동의 발파충격해석)

  • 김대홍;이경진;황신일;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.201-208
    • /
    • 1994
  • To secure long-term structural safety of underground openings for radioactive waste disposal, the proper structural safety analyses are required. Especially, the structural analysis for underground openings should consider the effects of groundwater pressure. The objective of this study is to develop the structural analysis method for saturated rock masses. In this study, the interaction between groundwater distribution and structural behavior of rock masses are carried out to develop the structural analysis method of saturated rock masses. Then, a 3-Dimensional Multi-Phase Dynamic Analysis Program (MPDAP-3D) has been developed by modifying the existing MPDAP which is based on the concept of 2-dimensional two-phase media.

  • PDF

Stability Analysis of Discontinuous Rock by the Block Theory (블록이론에 의한 불연속성 암반내 터널의 안정성 해석)

  • 양형식
    • Tunnel and Underground Space
    • /
    • v.1
    • /
    • pp.66-74
    • /
    • 1991
  • The block theory with stereographic projection was applied and analyzed on the tunnel section of Samcheok Coal Mine. The results were as follows ; 1) Prevail orientations of discontinuity of sandstone around the main driftway of Samcheok Coal Mine were $(327^{\circ},\;44^{\circ}),\;(13^{\circ},\;24^{\circ}),\;(204^{\circ},\;65^{\circ})$ and $(225^{\circ},\;77^{\circ})$ in dip and dip direction, respectively. 2) Movable blocks of the site were 0110, 0111, 1110(roof), 0100, 0110, 1110(right wall) and 0001, 1001, 1011(left wall). Because of the direction of tunnel, blocks of the left wall was safe. thus key blocks were those of the roof and the right wall. Maximum height of key block was larger than the width of the tunnel but 2m of the yielded zone is expected in general for 5m width tunnel. 3) It is shown that block theory is applicable to large cavern in hard rock analysis.

  • PDF

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Study on Establishing a Blast Guideline for Securing an Underground Crusher Room from Ground Vibrations (지하 조쇄실의 진동 안정성 확보를 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Kim, Hyun-Woo;Kang, Myoung-Soo
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.15-24
    • /
    • 2015
  • In general, blast vibrations could make underground cavern unstable by causing relative movements between the surrounding rock blocks that are divided by discontinuities such as joints and faults around the cavern. In the study, a blast guideline was established to obtain the stability of a large-scale cavern for underground crusher room in an open pit limestone mine in Korea. The guideline was suggested in the form of a standard calculation method of the maximum charge per delay for a safe blast. The allowable level of peak particle velocity for the cavern was determined based on the result of a numerical analysis using FLAC2D. The ground vibration data required for the study was obtained from field measurements.

Estimation of Water Leak Rate in the Underground Oil Storage Cavern (지하 원유 저장공동에서의 누수량 산정에 대한 연구)

  • Shim, Hyun-Jin;Park, Tae-Jun;Jeong, Woo-Cheol;Kim, Ho-Yeong;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.233-240
    • /
    • 2010
  • Double Plug is constructed for preventing mixing of two different oils between two compartments in the underground oil storage cavern. And the gas and oil tightness of double plug is tested from the measurement of water leakage from double plug after the completion of double plug water filling. If water leakage is underestimated, it can increase construction cost and if water leakage is overestimated, it can increase operating cost. Therefore, optimum water leakage should be estimated to cut down the cost. In this study, hydraulic stability analysis was conducted to consider permeable properties of rock mass around double plugs and a water leak rate from double plug was estimated from the hydraulic stability analysis and case study. Finally, the reliability of estimation of water leak rate was proven by comparing estimated water leak rate with measured data.

Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of Rudbar Lorestan pumped storage power plant, Iran

  • Bandpey, Abbas Kamali;Shahriar, Kourush;Sharifzadeh, Mostafa;Marefvand, Parviz
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-34
    • /
    • 2018
  • Discontinuities considerably affect the mechanical and hydraulic properties of rock mass. These properties of the rock mass are influenced by the geometry of the discontinuities to a great extent. This paper aims to render an account of the geometrical parameters of several discontinuity sets related to the surrounding rock mass of Rudbar Lorestan Pumped Storage Power Plant powerhouse cavern making use of the linear and areal (circular and rectangular) sampling methods. Taking into consideration quite a large quantity of scanline and the window samplings used in this research, it was realized that the areal sampling methods are more time consuming and cost-effective than the linear methods. Having corrected the biases of the geometrical properties of the discontinuities, density (areal and volumetric) as well as the linear, areal and volumetric intensity accompanied by the other properties related to four sets of discontinuities were computed. There is an acceptable difference among the mean trace lengths measured using two linear and areal methods for the two joint sets. A 3D discrete fracture network generation code (3DFAM) has been developed to model the fracture network based on the mapped data. The code has been validated on the basis of numerous geometrical characteristics computed by use of the linear, areal sampling methods and volumetric method. Results of the linear sampling method have significant variations. So, the areal and volumetric methods are more efficient than the linear method and they are more appropriate for validation of 3D DFN (Discrete Fracture Network) codes.

Three-dimensional Stability Analysis of A Large Underground Hall in Mined Area (채굴적 주변 대형 지하광장의 3차원 안정성해석)

  • 송원경;한공창
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.195-200
    • /
    • 2000
  • Numerical analysis using FLACSD has been conducted to estimate the stability of a large underground hall that is to be excavated in a mined area and constructed as an unit of a resort park. Numerical modelling is divided into two stages. The first stage is related to the analysis of the mechanical stability of the hall itself and the second to that of the influence of an adjacent mined cavity upon the hall. In the first stage, the stability of the hall is judged from the interpretation of numerical results in three respects: convergence of the unbalanced force of the model, occurrence of plastic zones and distribution of the displacement. In the second stage, variation of the stress state around the underground hall due to the existence of the cavity is compared to that in the case of the absence of the cavity. Through these analyses, it could be known that the large underground hall is not exposed to any mechanical problems and also not affected by the adjacent cavity. Key words : 3D numerical analysis, large underground cavern, stability analysis

  • PDF

Thermohydromechanical Stability Study on the Joint Characteristics and Depth Variations in the Region of an Underground Radwaste Repository (절리 발달 특성 및 심도 변화에 의한 방사성폐기물 처분장 주변영역에서의 열수리역학적 안정성 연구)

  • Kim, Jhinwung;Daeseok Bae;Park, Chongwon
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.153-168
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior in the vicinity of a repository cavern on the joint location and repository depth variations. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuel in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within the model. Joint set 1 includes joints of 56$^{\circ}$ dip angle, spaced at 20 m, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of 34$^{\circ}$ dip angle, spaced at 20 m. In order to understand the behavior change on the joint location variations, 5 different models of 500m in depth are analyzed, and additional 3 different models of 1000 m in depth are analyzed to understand the effect of depth variation.