• Title/Summary/Keyword: Rocatec system

Search Result 13, Processing Time 0.025 seconds

Effect of Rocatec system on Shear Bond Strength between Zir-Ceram and Sinfony Indirect Composite Resin (Rocatec system이 Zir-ceram과 간접복합수지간의 전단결합강도에 미치는 영향)

  • Kim, Dong-Il;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this study is to evaluate possibility of using indirect composite resin instead of porcelain through the measurement of shear bond strength between zirconia core and indirect composite resin under treatment of $Rocatec^{TM}$ system for improving the adhesion of indirect composite resin. 20 cylindrical zirconia core specimens were divided into 2 groups, according to zirconia surface treatment and attached materials: 1) treated with sandblast and attached with indirect composite resin, 2) treated with sandblast + $Rocatec^{TM}$ system and attached with indirect composite resin. The shear bond strength of each experimental group was measured by MTS and the changes of zirconia core surface according to surface treatments were obtained by SEM observation and measurements of surface roughness. The mean shear bond strength values are $0.55\;{\pm}\;0.11MPa$(Group SC) and $1.16\;{\pm}\;0.46MPa$(Group SRC). The mean Ra values for the surface treatments were follows: $0.39\;{\pm}\;0.13$($100{\beta}_{{\mu}m}$ sandblast) and $0.50\;{\pm}\;0.03$($100{\beta}_{{\mu}m}$ sandblast + $Rocatec^{TM}$ system). In the analysis of EDS, Si element was detected in the Group SC. The shear bond strength between zirconia core and indirect composite resin was improved significantly by using $Rocatec^{TM}$ system.

  • PDF

The effect of surface treatment conditioning on shear bond strength between zirconia and dental resin cements (지르코니아 세라믹의 표면처리에 따른 치과용 접착제의 전단결합강도)

  • Kim, Ji-Hye;Seo, Jae-Min;Ahn, Seung-Geun;Park, Ju-Mi;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the effect of surface treatment on the shear bond strength of zirconia ceramic to 3 resin cements. Materials and methods: A total of 143 disk-shaped Zirconia blocks (HASS Co., Gangneung, Korea) were randomly divided into three treatment groups: (1) only 50 ${\mu}m$ $Al_2O_3$ sandblasting, (2) 50 ${\mu}m$ $Al_2O_3$ sandblast and zircona liner, (3) 50 ${\mu}m$ $Al_2O_3$ sandblasting and Rocatec (3M ESPE, Seefeld, Germany). Bistite II (Tokuyama Dental Co., Japan), Panavia F (Kuraray Medical, Japan), and Superbond C&B (Sun Medical, Japan) were used to cement onto the zirconia. After 24h of storage in distilled water, shear bond strength was evaluated. High value group was re-tested after thermocycling at 5,000 cycles(5-$55^{\circ}C$). Shear bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and Post Hoc Test (${\alpha}$=.05). Shear bond strength data before and after thermocycling were analyzed with Independent sample T test (${\alpha}$=.05). Results: Super-bond C&B treated with Rocatec showed the most high shear bond strength. Super-bond C&B groups resulted in significantly higher than other cement groups (P<.05). Rocatec groups resulted in significantly higher than other surface treatment groups (P<.05). Shear bond strength has increased in Panavia F treated with Zirconia liner (P<.05). After thermocycling, shear bond strength was increased in Super-bond C&B treated with Rocatec but decreased in other groups (P<.05). Conclusion: Super-bond C&B cement resulted the highest shear bond strength and Rocatec system enhanced the shear bond strength. After thermocycling, shear bond strength has decreased in most resin cements except Super-bond C&B treated with Rocatec.

EFFECT OF SURFACE TREATMENT METHODS ON THE SHEAR BOND STRENGTH OF RESIN CEMENT TO ZIRCONIA CERAMIC

  • Lee, Ho-Jeong;Ryu, Jae-Jun;Shin, Sang-Wan;Sub, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.743-752
    • /
    • 2007
  • Statement of problem. The aims of the study were to evaluate the effect of current surface conditioning methods on the bond strength of a resin composite luting cement bonded to ceramic surfaces and to identify the optimum cement type. Material and methods. The sixty zirconia ceramic specimens(10 per group) with EVEREST milling machine and 60 tooth block were made. The zirconia ceramic surface was divided into two groups according to surface treatment: (1) airborne abrasion with $110{\mu}m$ aluminum oxide particles; (2) Rocatec system, tribochemical silica coating. The zirconia ceramic specimens were cemented to tooth block using resin cements. The tested resin cements were Rely X ARC, Panavia F and Superbond C&B. Each specimen was mount in a jig of the universal testing machine for shear strength. The results were subjected to 2-way ANOVA and Post hoc tests was performed using Tukey, Scheffe, and Bonferroni test. Results. The mean value of shear bond strength(MPa) were as follows: $$RelyXARC(+Al_2O_3),5.35{\pm}1.69$$; $$RelyXARC(+Rocatec),8.50{\pm}2.13$$; $$PanaviaF(+Al_2O_3),9.58{\pm}1.13$$; $$PanaviaF(+Rocatec),12.98{\pm}1.71$$; $$SuperbondC&B(+Al_2O_3)8.27{\pm}2.04$$; $$SuperbondC&B(+Rocatec),14.46{\pm}2.39$$. There was a significant increase in the shear bond strength when the ceramic surface was subjected to the tribochemical treatment(Rocatec 3M) in all cement groups(P<0.05). Bonding strengths of cements applied to samples treated with $Al_2O_3$ were compared; Rely X ARC showed the lowest values, whereas Panavia F cement showed higher value than that of Superbond C&B group with no statistical significance. When the bond strength of cements with of Rocatec treatment was compared, Rely X ARC showed lowest values. Overall, it was apparent that tribochemical treated Super-Bond possessed higher mean bond strength (14.46MPa; P<0.05) than that of Panavia F cement group with no significance. Conclusions. Silica coating followed silanization(Rocatec treatment) increase the bond strength between resin cement and zirconia ceramic. Panavia F containing phosphate monomer and Superbond C&B comprised of 4-META tend to bond chemically with zirconia ceramic, thus demonstrating higher bond strength compared to BisGMA resin cement. Superbond C&B has shown to have highest value of bonding strength to zirconia ceramic after Rocatec treatment compared to other cement.

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

The Effect of Surface Treatment on the Shear Bond Strength of Resin Cement to Zirconia Ceramics (표면처리가 지르코니아와 레진 시멘트의 전단결합강도에 미치는 효과)

  • Jung, Seung-Hyun;Kim, Kye-Soon;Lee, Jae-In;Lee, Jin-Han;Kim, Yu-Lee;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.83-94
    • /
    • 2009
  • The aim of this study was to investigate the shear bond strength between zirconia ceramic and resin cement according to various surface treatments. The surface of each zirconia ceramic was subjected to one of the following treatments and then bonded Rely X Unicem or Rely X ARC resin cement; (1) Rocatec system and $50{\mu}m$ surface polishing, (2) No treatment and $50{\mu}m$ surface polishing, (3) Rocatec system and $1{\mu}m$ surface polishing, (4) No treatment and $1{\mu}m$ surface polishing. Each of eight bonding group was tested in shear bond strengths by universal testing machine(Z020, Zwick, Ulm, Germany) with crosshead speed of 1mm/min. The results were as follows; 1. Rocatec treatment groups showed greater bonding strengths than No Rocatec groups. There was significant difference of among groups(P<0.001) 2. For Rocatec groups, $50{\mu}m$ surface roughness groups showed greater bonding strengths than $1{\mu}m$ surface roughness groups.(P<0.001) But for No Rocatec groups, There was no significant difference of among groups(P>0.05) 3. Rely X Unicem groups showed greater bonding strengths than Rely X ARC groups. There was significant difference of among groups(P<0.01) Within the conditions of this study, Rocatec treatment was an effective way of increasing zirconia bonds to a resin cement, even in the case of self-adhesive resin cement.

SHEAR BOND STRENGTH OF HEAT-CURED DENTURE BASE RESIN TO SURFACE TREATED CO-CR ALLOY WITH DIFFERENT METHODS (코발트-크롬 합금의 표면처리에 따른 열중합형 의치상용 레진과의 전단결합강도)

  • Lee, Sang-Hoon;Hwang, Sun-Hong;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.216-227
    • /
    • 2007
  • Statement of problem: For the long-term success of removable partial dentures, the bonding between metal framework and denture base resin is one of the important factors. To improve bonding between those, macro-mechanical retentive form that is included metal framework design has been generally used. However it has been known that sealing at the interface between metal framework and denture base resin is very weak, because this method uses mechanical bonding. Purpose: Many studies has been made to find a simple method which induces chemical bond, now various bonding system is applied to clinic. In this experiment, shear bond strengths of heat-cured denture base resin to the surface-treated Co-Cr alloy were measured before and after thermocycling. Chemically treated groups with Alloy $Primer^{TM}$, Super-Bond $C&B^{TM}$, and tribochemically treated group with $Rocatec^{TM}$ system were compared to the beadtreated control group. The data were analyzed with two-way ANOVA. Result: 1. Shear bond strength of bead-treated group is highest, and Alloy $Primer^{TM}$ treated group, Super-Bond $C&B^{TM}$ treated group, RocatecTM system treated group were followed. Statistically significant differences were found in each treated group(p<0.05). 2. Surface treatment and thermocycling affected shear bond strength(p<0.05), however there was no interaction between two factors(p>0.05). 3. Shear bond strengths of bead-treated group and Alloy $Primer^{TM}$ treated group showed no statistically significant difference before and after thermocycling(p>0.05), and those of Super-Bond $C&B^{TM}$ treated group and $Rocatec^{TM}$ system treated group showed statistically significant difference after thermocycling(p<0.05).

Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base

  • Park, Se-Jick;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.262-272
    • /
    • 2022
  • PURPOSE. This study aimed to analyze the shear bond strength between the 3D-printed denture base and the chairside relining material, according to the surface treatment. MATERIALS AND METHODS. Cylindrical specimens were prepared using DENTCA Denture Base II. The experimental groups were divided into 6 (n = 10): no surface treatment (C), Tokuyama Rebase II Normal adhesive (A), sandblasting (P), sandblasting and adhesive (PA), sandblasting and silane (PS), and the Rocatec system (PPS). After bonding the chairside relining material to the center of the specimens in a cylindrical shape, they were stored in distilled water for 24 hours. Shear bond strength was measured using a universal testing machine, and failure mode was analyzed with a scanning electron microscope. Shear bond strength values were analyzed using one-way analysis of variance, and Tukey's honest significant difference test was used for post-hoc analysis (P < .05). RESULTS. Group PPS exhibited significantly higher shear bond strength than all other groups. Groups P and PA displayed significantly higher bond strengths than the control group. There were no significant differences between groups PS and A compared to the control group. Regarding the failure mode, adhesive failure occurred primarily in groups C and A, and mixed failure mainly in groups P, PA, PS, and PPS. CONCLUSION. The shear bond strength between the 3D-printed denture base and the chairside relining material exhibited significant differences according to the surface treatment methods. It is believed that excellent adhesive strength will be obtained when the Rocatec system is applied to 3D-printed dentures in clinical practice.

Effects of Surface Treatments of The Zirconium-Based Ceramic on the Bond Strength of Resin Cement (지르코니움 세라믹에서 표면 처리 방법이 레진 시멘트의 접착력에 미치는 영향)

  • Park, Kyung-Seok;Shin, Soo-Youn;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.221-230
    • /
    • 2006
  • Recently, the need for esthetic results has increased the interest for all-ceramic crown prosthesis. Furthermore, the development of zirconium core via CAD/CAM system has allowed the all ceramic restorations to be applied to almost all fixed prosthesis situations. But, the increased strength has been reported to increase in proportion with the bond strength of cement, and recently, the tribochemical system which increases the bond strength through, silica coating and silanization has been introduced. The purpose of this study was to compare the $Rocatec^{TM}$ system and $CoJet^{TM}$ system with the traditional acid etching and silanization method of the irconium based ceramic. The surface character was observed via SEM(X2000), and the bond strength with the resin cement were measured. 50 In-Ceram Zirconia (Adens, Korea) discs were fabricated and embedded in resin, group 1 was treated with glass-bead blasting and cleaning, group 2 was treated with 20% HF for 10 minutes and silanized, group 3 was treated with the $Rocatec^{TM}$ system, and group 4 was treated with the $CoJet^{TM}$ system. Each group was comprised of 10 specimens. The specimens were cemented to a $3mm{\times}5mm$ resin block with Super-Bond C&B. The shear bond strength was measured with the $Instron^{(R)}$ 8871 at a crosshead speed of 0.5mm/min. The results were as follows. 1. According to SEM results, there were little difference between group 1 & group 2, but in group 3 and 4, silica coating was detected and there was increase in surface roughness. 2. The shear bond strength decreased in the order of group 3(46.28MPa), group 4(42.04MPa), group 2(31.56MPa), and group 1(27.46MPa). 3. There was significant differnce between group 1&2 and group 3&4(p<0.05). From the results above, it can be considered that the conventional method of acid etching and silane treatment cannot increase the bond strength with resin cements, and that by applying the tribochemical system of $Rocatec^{TM}$ system and $CoJet^{TM}$ system, we can achieve a stronger all ceramic restoration. Further studies on surface treatments to increase the bond strength are thought to be needed.

Shear Bond Strength and Failure Mode between Sinfony Indirect Composite Resin and Non Precious Metal (Sinfony 간접복합수지와 비귀금속합금간의 전단결합강도와 파절양상)

  • Min, Byung-Rok;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.79-86
    • /
    • 2008
  • The purpose of this study was to investigate the effect retention element formed by metal surface treatment method on the bond strength of indirect composite resin and metal. The metal specimens were cast from Ni-Cr alloy($Rexillium^{(R)}$ III). They were divided into 5 groups by applied retention element: $50{\mu}m$ aluminium oxide sandblasting group, $250{\mu}m$ aluminium oxide sandblasting group, 0.2mm retention crystal group, 10% $H_{2}SO_{4}$ solution etching group, $110{\mu}m$ $Rocatec^{TM}$ Plus system group. Total 50 metal specimens were veneered with Sinfony indirect composite resin system. Specimens were tested for shear bond strength on an Instron universal testing machine and fracture mode of fractured specimens were analyzed by SEM and EDS. 1. 0.2 mm retention crystals were most effective in improving the resin-metal shear bond strength (p<0.05). 2. Sandblasting by $250{\mu}m$ aluminium oxide were more effective than sandblasting by $50{\mu}m$ aluminium oxide in improving the resin-metal shear bond strength(p<0.05). 3. Fracture mode of resin-metal fractured surface were cohesive failure mode in 0.2mm retention crystal, mixed failure mode in sandblasted specimens, etched specimens and the specimens sandblasted with $110{\mu}m$ $Rocatec^{TM}$ Plus system.

  • PDF

Effec of different zirconia primers on shear bond strengths of composite resin to bonded zirconia (지르코니아 프라이머 종류에 따른 복합레진-지르코니아의 전단결합강도)

  • Shi, Hong-Bing;Kim, Tae-Seok;Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The aim of this research was to evaluate the influence of different surface treatments on the shear bond strength of zirconia ceramic to composite resin. Methods: Seventy two cylinder-shape (diameter: 5 mm; height: 12 mm) blocks of experimental industrially manufactured Y-TZP ceramic were abraded with $125{\mu}m\;Al_2O_3$ particles and randomly divided into 4 groups. All the materials were categorized as group Gc(control group - composite resin veneering on zirconia surface), Gr - composite resin veneering after surface treatment of Rocatec system (3M ESPE, Seefeld, Germany) group; Gz - composite resin veneering after surface treatment of Zirconia primer (Z-primer, Bisco, U.S.A) group; Gm - composite resin veneering after surface treatment of zirconia primer (Monobond plus, ivoclar vivadent AG, Liechtenstein) group. Two different zirconia primers and Rocatec system were used to zirconia cylinders (n=16) onto the zirconia surface. Zirconia specimens, polished and roughened, were pretreated and composite bilayer cylinders bonded using conventional adhesive techniques. Results: Shear bond strengths were analyzed using single-factor ANOVA(p<0.05). Bond strength values achieved after airbone particle abrasion and zirconia surface pre-treatments(p<0.05). Conclusion: Shear bond strength tests denmonstrated that zirconia primer is a viable method to improved bond strength between zirconia ceramic core and veneering composites.