• 제목/요약/키워드: Robust voice recognition

검색결과 33건 처리시간 0.025초

인간-로봇 상호협력작업을 위한 모바일로봇의 지능제어에 관한 연구 (A Study on Intelligent Control of Mobile Robot for Human-Robot Cooperative Operation in Manufacturing Process)

  • 김두범;배호영;김상현;임오득;백영태;한성현
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.137-146
    • /
    • 2019
  • This study proposed a new technique to control of mobile robot based on voice command for (Human-Robot Cooperative operation in manufacturing precess). High performance voice recognition and control system was designed In this paper for smart factory. robust voice recognition is essential for a robot to communicate with people. One of the main problems with voice recognition robots is that robots inevitably effects real environment including with noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we describe an robust voice recognition system which can robustly recognize voice by adults and students in noisy environments. It is illustrated by experiments the voice recognition performance of mobile robot placed in a real noisy environment.

잡음 환경에서의 음성 검출 알고리즘 비교 연구 (A Comparative Study of Voice Activity Detection Algorithms in Adverse Environments)

  • 양경철;육동석
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 춘계 학술대회 발표논문집
    • /
    • pp.45-48
    • /
    • 2006
  • As the speech recognition systems are used in many emerging applications, robust performance of speech recognition systems under extremely noisy conditions become more important. The voice activity detection (VAD) has been taken into account as one of the important factors for robust speech recognition. In this paper, we investigate conventional VAD algorithms and analyze the weak and the strong points of each algorithm.

  • PDF

음성의 특정 주파수 범위를 이용한 잡음환경에서의 감정인식 (Noise Robust Emotion Recognition Feature : Frequency Range of Meaningful Signal)

  • 김은호;현경학;곽윤근
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.68-76
    • /
    • 2006
  • The ability to recognize human emotion is one of the hallmarks of human-robot interaction. Hence this paper describes the realization of emotion recognition. For emotion recognition from voice, we propose a new feature called frequency range of meaningful signal. With this feature, we reached average recognition rate of 76% in speaker-dependent. From the experimental results, we confirm the usefulness of the proposed feature. We also define the noise environment and conduct the noise-environment test. In contrast to other features, the proposed feature is robust in a noise-environment.

적응 MFCC와 Neural Network 기반의 음성인식법 (Voice Recognition Based on Adaptive MFCC and Neural Network)

  • 배현수;이석규
    • 대한임베디드공학회논문지
    • /
    • 제5권2호
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we propose an enhanced voice recognition algorithm using adaptive MFCC(Mel Frequency Cepstral Coefficients) and neural network. Though it is very important to extract voice data from the raw data to enhance the voice recognition ratio, conventional algorithms are subject to deteriorating voice data when they eliminate noise within special frequency band. Differently from the conventional MFCC, the proposed algorithm imposed bigger weights to some specified frequency regions and unoverlapped filterbank to enhance the recognition ratio without deteriorating voice data. In simulation results, the proposed algorithm shows better performance comparing with MFCC since it is robust to variation of the environment.

Robust Entropy Based Voice Activity Detection Using Parameter Reconstruction in Noisy Environment

  • Han, Hag-Yong;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • 제1권4호
    • /
    • pp.205-208
    • /
    • 2003
  • Voice activity detection is a important problem in the speech recognition and speech communication. This paper introduces new feature parameter which are reconstructed by spectral entropy of information theory for robust voice activity detection in the noise environment, then analyzes and compares it with energy method of voice activity detection and performance. In experiments, we confirmed that spectral entropy and its reconstructed parameter are superior than the energy method for robust voice activity detection in the various noise environment.

RVR에 의한 자율주행로봇의 정밀제어에 관한연구 (A Study on Precise Control of Autonomous Travelling Robot Based on RVR)

  • 심병균;;김종수;하언태
    • 한국산업융합학회 논문집
    • /
    • 제17권2호
    • /
    • pp.42-53
    • /
    • 2014
  • Robust voice recognition (RVR) is essential for a robot to communicate with people. One of the main problems with RVR for robots is that robots inevitably real environment noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we propose an RVR system which can robustly recognize voice by adults and children in noisy environments. We evaluate the RVR system in a communication robot placed in a real noisy environment. Voice is captured using a wireless microphone. Navigation Strategy is shown Obstacle detection and local map, Design of Goal-seeking Behavior and Avoidance Behavior, Fuzzy Decision Maker and Lower level controller. The final hypothesis is selected based on posterior probability. We then select the task in the motion task library. In the motion control, we also integrate the obstacle avoidance control using ultrasonic sensors. Those are powerful for detecting obstacle with simple algorithm.

음성 에너지 최대화와 묵음 특징 정규화를 이용한 잡음 환경에 강인한 음성 검출 (Voice Activity Detection in Noisy Environment using Speech Energy Maximization and Silence Feature Normalization)

  • 안찬식;최기호
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.169-174
    • /
    • 2013
  • 음성 인식 성능 저하의 문제는 모델 훈련 환경과 인식 환경의 차이이다. 이러한 환경의 불일치를 줄이기 위한 방법으로 다양한 묵음 특징 정규화 방법을 사용하고 있다. 기존의 묵음 특징 정규화 방법은 낮은 신호 대 잡음비에서 묵음 구간의 에너지 레벨이 증가하여 음성과 비음성에 대한 분류의 정확도가 떨어짐으로 인해 인식 성능이 저하되는 문제점이 있다. 본 논문에서는 음성 에너지 최대화와 묵음 특징 정규화를 이용한 잡음 환경에 강인한 음성 검출 방법을 제안하였다. 제안한 방법은 높은 신호 대 잡음비에서는 음성 에너지를 최대화시켜 특징이 잡음의 영향을 적게 받는 특성을 이용하였고 낮은 신호 대 잡음비에서는 음성/비음성의 켑스트럼 특징 분포 특성을 이용하여 인식 성능을 향상시켰다. 인식 실험 결과 기존 방법에 비해 향상된 인식 성능을 확인할 수 있었다.

음성 활동 구간 검출을 위한 스펙트랄 엔트로피의 재구성 효과 (Reconstruction Effect of the Spectral Entropy for the Voice Activity Detection)

  • 권호민;한학용;이광석;고시영;허강인
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.25-28
    • /
    • 2002
  • Voice activity detection is important Problem in the speech recognition and communication. This paper introduces feature parameter which is reconstructed by the spectral entropy of information theory for the robust voice activity detection in the noise environment, analyzes and compares it with the energy method of voice activity detection and performance. In experiment, we confirmed that the spectral entropy is more feature parameter than the energy method for the robust voice activity detection in the various noise environment.

  • PDF

음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출 (Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments)

  • 홍정표;박상준;정상배;한민수
    • 말소리와 음성과학
    • /
    • 제5권1호
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

DSP를 이용한 자동차 소음에 강인한 음성인식기 구현 (Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP)

  • 정익주
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF