• Title/Summary/Keyword: Robust reliability

Search Result 330, Processing Time 0.039 seconds

Reliability Based & Robust Design Optimization of Airfoils for the Wind Turbine Blade Considering Operating Uncertainty (운용조건의 불확실성을 고려한 풍력터빈 블레이드용 익형의 신뢰성 기반 강건 최적 설계)

  • Jung, Ji-Hun;Park, Kyung-Hyun;Jun, Sang-Ook;Kang, Hyung-Min;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.427-430
    • /
    • 2009
  • 풍력 터빈 블레이드용 익형의 경우 운용 조건에서 높은 양항비를 가지도록 설계되나 풍속, 풍향의 변동에 의해 운용조건에 변화가 발생할 경우 성능의 저하가 발생할 수 있다. 따라서 운용조건의 변동이 발생하더라도 공력 성능이 크게 변하지 않는 익형이 요구된다. 본 연구에서는 이러한 운용조건의 불확실성을 고려하여 풍력 터빈 블레이드용 익형의 신뢰성 기반 강건 최적 설계를 수행하였다. 익형 설계를 위해서 여러 익형 형상 변수들을 고려할 수 있는 익형 모델링 함수를 정의하였고 기저형상으로는 NREL에서 개발한 S809 익형을 사용하였다.

  • PDF

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

An evolutionary approach for structural reliability

  • Garakaninezhad, Alireza;Bastami, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.329-339
    • /
    • 2019
  • Assessment of failure probability, especially for a complex structure, requires a considerable number of calls to the numerical model. Reliability methods have been developed to decrease the computational time. In this approach, the original numerical model is replaced by a surrogate model which is usually explicit and much faster to evaluate. The current paper proposed an efficient reliability method based on Monte Carlo simulation (MCS) and multi-gene genetic programming (MGGP) as a robust variant of genetic programming (GP). GP has been applied in different fields; however, its application to structural reliability has not been tested. The current study investigated the performance of MGGP as a surrogate model in structural reliability problems and compares it with other surrogate models. An adaptive Metropolis algorithm is utilized to obtain the training data with which to build the MGGP model. The failure probability is estimated by combining MCS and MGGP. The efficiency and accuracy of the proposed method were investigated with the help of five numerical examples.

Seismic reliability assessment of base-isolated structures using artificial neural network: operation failure of sensitive equipment

  • Moeindarbari, Hesamaldin;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.425-436
    • /
    • 2018
  • The design of seismically isolated structures considering the stochastic nature of excitations, base isolators' design parameters, and superstructure properties requires robust reliability analysis methods to calculate the failure probability of the entire system. Here, by applying artificial neural networks, we proposed a robust technique to accelerate the estimation of failure probability of equipped isolated structures. A three-story isolated building with susceptible facilities is considered as the analytical model to evaluate our technique. First, we employed a sensitivity analysis method to identify the critical sources of uncertainty. Next, we calculated the probability of failure for a particular set of random variables, performing Monte Carlo simulations based on the dynamic nonlinear time-history analysis. Finally, using a set of designed neural networks as a surrogate model for the structural analysis, we assessed once again the probability of the failure. Comparing the obtained results demonstrates that the surrogate model can attain precise estimations of the probability of failure. Moreover, our proposed approach significantly increases the computational efficiency corresponding to the dynamic time-history analysis of the structure.

Validation of sequence test method of Pb-free solder joint for automotive electronics (자동차 전장품용 무연솔더 접합부의 시리즈 시험 유효성)

  • Kim, A Young;Oh, Chul Min;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.25-31
    • /
    • 2015
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from electronic devices and system. Specifically, reliability issue of lead-free solder joint have an increasing demand for the car electronics caused by ELV banning. The authors prepared engine control unit and cabin electronics soldered with Sn-3.0Ag-0.5Cu (SAC305). To compare with the degradation characteristics of solder joint strength, thermal cycling test (TC), power-thermal cycling test (PTC) and series tests were conducted. Series tests were conducted for TC and PTC combined stress test using the same sample in sequence and continuously. TC test was performed at $-40{\sim}125^{\circ}C$ and soak time 10 min for 1000 cycles. PTC test was applied by pulse power and full function conditions during 100 cycles. Combined stress test was tested in accordance with automotive company standard. Solder joint degradation was observed by optical microscopy and environment scanning electron microscopy (ESEM). In addition, to compare with deterioration of bond strength of quad flat package (QFP) and chip components, we have measured lead pull and shear strength. Based on the series test results, consequently, we have validated of series test method for lifetime and reliability of Pb-free solder joint in automotive electronics.

Robust optimization of reinforced concrete folded plate and shell roof structure incorporating parameter uncertainty

  • Bhattacharjya, Soumya;Chakrabortia, Subhasis;Dasb, Subhashis
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.707-726
    • /
    • 2015
  • There is a growing trend of considering uncertainty in optimization process since last few decades. In this regard, Robust Design Optimization (RDO) scheme has gained increasing momentum because of its virtue of improving performance of structure by minimizing the variation of performance and ensuring necessary safety and feasibility of constraint under uncertainty. In the present study, RDO of reinforced concrete folded plate and shell structure has been carried out incorporating uncertainty in the relevant parameters by Monte Carlo Simulation. Folded plate and shell structures are among the new generation popular structures often used in aesthetically appealing constructions. However, RDO study of such important structures is observed to be scarce. The optimization problem is formulated as cost minimization problem subjected to the force and displacements constraints considering dead, live and wind load. Then, the RDO is framed by simultaneously optimizing the expected value and the variation of the performance function using weighted sum approach. The robustness in constraint is ensured by adding suitable penalty term and through a target reliability index. The RDO problem is solved by Sequential Quadratic Programming. Subsequently, the results of the RDO are compared with conventional deterministic design approach. The parametric study implies that robust designs can be achieved by sacrificing only small increment in initial cost, but at the same time, considerable quality and guarantee of the structural behaviour can be ensured by the RDO solutions.

Structural Robust Design of PEMFC Gasket Using Taguchi Method (다구찌 방법을 이용한 고분자 전해질 연료전지 가스켓의 강건 구조 설계)

  • Yoon, Jin-Young;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.740-746
    • /
    • 2008
  • In this paper, robust structural design of the PEMFC stack gasket is pursued with Taguchi method by considering the noise factor in stack assembly. The study of noise problem in stacking is required to secure the safety and performance improvement of PEMFC stack. The design parameters in the Taguchi method are selected so that the structural responses are insensitive to the noise factors. In the gasket analysis, a Mooney-Rivlin strain energy function is used to consider hyperelasticity between load and displacement. By uni-axial and equi-biaxial tension tests of the gasket, the material properties are determined for the use in robust design of PEMFC gasket. The robust design of the PEMFC stack may provide structural reliability.

Robust Positioning-Sensing for n Ubiquitous Mobile Robot (유비쿼터스 모바일 로봇의 강인한 위치 추정 기법)

  • Choi, Hyo-Sik;Hwang, Jin-Ah;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1139-1145
    • /
    • 2008
  • A robust position sensing system is proposed in this paper for a ubiquitous mobile robot which moves indoors as well as outdoors. The Differential GPS (DGPS) which has a position estimation error of less than 5 m is a general solution when the mobile robot is moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is reliable as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference coordinates and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. Using the database, the approaching status of the mobile robot from indoor to outdoor or vice versa has been checked and the switching conditions are prepared before the mobile robot actually moves out or moves into the door. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified and demonstrated through the real experiments using a mobile robot prepared for this research.

Robust Watermarking for Compressed Video Using Fingerprints and Its Applications

  • Jung, Soo-Yeun;Lee, Dong-Eun;Lee, Seong-Won;Paik, Joon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.794-799
    • /
    • 2008
  • This paper presents a user identification method at H.264 streaming using watermarking with fingerprints. The watermark can efficiently reduce the potential danger of forgery or alteration. Especially a biometric watermark has convenient, economical advantages. The fingerprint watermark can also improve reliability of verification using automated fingerprint identification systems. These algorithms, however, are not robust against common video compression. To overcome this problem, we analyze H.264 compression pattern and extract watermark after restoring damaged watermark using various filters. The proposed algorithm consists of enhancement of a fingerprint image, watermark insertion using discrete wavelet transform and extraction after restoring. The proposed algorithm can achieve robust watermark extraction against H.264 compressed videos.

Voting based Cue Integration for Visual Servoing

  • Cho, Che-Seung;Chung, Byeong-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.798-802
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper, the robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is to use different models (CAD model etc.) known a priori. Also fusion of multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Because voting is a very simple or no model is needed for fusion, voting-based fusion of cues is applied. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters, namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF