• Title/Summary/Keyword: Robust decision making

Search Result 86, Processing Time 0.024 seconds

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

Development of Robust-SDP for improving dam operation to cope with non-stationarity of climate change (기후변화의 비정상성 대비 댐 운영 개선을 위한 Robust-SDP의 개발)

  • Yoon, Hae Na;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1135-1148
    • /
    • 2018
  • Previous studies on reservoir operation have been assumed that the climate in the future would be similar to that in the past. However, in the presence of climate non-stationarity, Robust Optimization (RO) which finds the feasible solutions under broader uncertainty is necessary. RO improves the existing optimization method by adding a robust term to the objective function that controls the uncertainty inherent due to input data instability. This study proposed Robust-SDP that combines Stochastic Dynamic Programming (SDP) and RO to estimate dam operation rules while coping with climate non-stationarity. The future inflow series that reflect climate non-stationarity were synthetically generated. We then evaluated the capacity of the dam operation rules obtained from the past inflow series based on six evaluation indicators and two decision support schemes. Although Robust-SDP was successful in reducing the incidence of extreme water scarcity events under climate non-stationarity, there was a trade-off between the number of extreme water scarcity events and the water scarcity ratio. Thus, it is proposed that decision-makers choose their optimal rules in reference to the evaluation results and decision support illustrations.

The Optimal Parameter Decision of$\beta$ carotene Mass Production Using Taguchi Method (다구찌 방법을 이용한 $\beta$-carotene 대량생산의 최적환경 조건 결정)

  • 조용욱;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, the most economical product and process design from both manufacturing and customers' viewpoints can be accomplished at the smallest, affordable development cost. Many companies, big and small, high-tech and low-tech, have found the Robust Design method valuable in making high-quality products available to customers at a low competitive price while still maintaining an acceptable profit margin. A study to analyze and solve problems of a biochemical process experiment has presented in this paper. We have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.

  • PDF

Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space (특징공간을 사선 분할하는 퍼지 결정트리 유도)

  • Lee, Woo-Hang;Lee, Keon-Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.156-166
    • /
    • 2002
  • Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.

A Global Robust Optimization Using the Kriging Based Approximation Model (크리깅 근사모델을 이용한 전역적 강건최적설계)

  • Park Gyung-Jin;Lee Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1243-1252
    • /
    • 2005
  • A current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, the Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, a design procedure for global robust optimization is developed based on the kriging and global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Robustness is determined by the DACE model to reduce real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. As the postprocess, the first order second-moment approximation method is applied to refine the robust optimum. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

An Immune Algorithm based Multiple Energy Carriers System (면역알고리즘 기반의 MECs (에너지 허브) 시스템)

  • Son, Byungrak;Kang, Yu-Kyung;Lee, Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

Robust production and transportation planning for TFT-LCD industry under demand and price uncertainties using scenario model (시나리오 모델을 활용한 수요 및 가격 불확실성이 존재하는 TFT-LCD 산업에서의 Robust 생산 및 수송계획)

  • Shin, Hyun-Joon;Ru, Jae-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3304-3310
    • /
    • 2010
  • This study solves the decision making problems for TFT-LCD manufacturing supply chain with demand and price uncertainties by establishing robust production and distribution strategies. In order to control the decisions regarding production graded by quality, inventory level and distribution, this study develop scenario model based stochastic mixed integer linear programs (SMILPs) that consider demand and price uncertainties as well as realistic constraints such as capacities etc. The performance of the solution obtained from the SMILPs using robust algorithms will be evaluated through various scenarios.

Optimization of Sheet Metal Forming Process Based on Two-Attribute Robust Design Methodology (2속성 강건 설계를 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Fractures and wrinkles are two major defects frequently found in the sheet metal forming process. The process has several noise factors that cannot be ignored when determining the optimal process conditions. Therefore, without any countermeasures against noise, attempts to reduce defects through optimal design methods have often led to failure. In this study, a new and robust design methodology that can reduce the possibility of formation of fractures and wrinkles is presented using decision-making theory. A two-attribute value function is presented to form the design metric for the sheet metal forming process. A modified complex method is adopted to isolate the optimal robust design variables. One of the major limitations of the traditional robust design methodology, which is based on an orthogonal array experiment, is that the values of the optimal design variables have to coincide with one of the experimental levels. As this restriction is eliminated in the complex method, a better solution can be expected. The procedure of the proposed method is illustrated through a robust design of the sheet metal forming process of a side member of an automobile body.

Robust Design Methodology of a Coupled System (연성 시스템의 강건설계 방법)

  • Lee, Kwon-Hee;Park, Gyung-Jin;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1763-1768
    • /
    • 2003
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.