• Title/Summary/Keyword: Robust current control

Search Result 301, Processing Time 0.023 seconds

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

A Novel MPPT Control of a Photovoltaic System using an FLC Algorithm

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.17-25
    • /
    • 2014
  • This paper proposes a novel maximum power point tracking (MPPT) system using a fuzzy logic control (FLC) algorithm for robust in-environment changing. The power available at the output of a photovoltaic (PV) cell continues to change with radiation and temperature because a solar cell exhibits nonlinear current-voltage characteristics. Therefore, the maximum power point (MPP) of PV cells varies with radiation and temperature. The MPPT methods are used in PV systems to make full utilization of the PV array output power, which depends on radiation and temperature. The conventional MPPT control methods such as constant voltage (CV), perturbation and observation (PO) and incremental conductance (IC) have been studied but these methods are problematic in that they fail to take into account the changing environment. The proposed FLC controller is based on the fuzzy control algorithm and facilitates robust control with the environmental changes. Also, the PV systems applied FLC controller is modeled by PSIM and the response characteristics of the FLC method according to environmental variations are analyzed through comparison with the performance of conventional methods. The validity of this controller is shown through response results.

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.

Robust Control against Voltage Source Variation for PWM Converters of the High Speed Traction (고속철도 차량용 PWM 컨버터의 전원전압 변동에 강인한 제어)

  • Park, Byoung-Gun;Lee, Woo-Cheol;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1271-1278
    • /
    • 2010
  • High-speed traction has voltage source variation because the electric power of tractions is supplied by difference traction power system according to operating section. This paper proposes the robust control maintaining constant output performance against voltage source variation for PWM converters of the high speed traction. The proposed scheme consists of feed-forward compensation for current controller by on-line calculating the rms voltage of voltage source. Total dynamic performance of high speed traction can be improved by the reduction of the output voltage ripple which is resulted from voltage source sag and variation. The superior performance and validity of the proposed scheme is proved through the simulation.

  • PDF

The design of the variable structure position controller for a DC servo motor using Digital Signal Processor (DSP를 이용한 DC 모타에 대한 가변구조 위치제어기 설계)

  • Park, Gwi-Tae;Kang, Moon-Ho;Lee, Young;Moon, Ii-Nam;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.319-323
    • /
    • 1990
  • VSS controller is suited for systems where the robust performances in the presence of parameter variations and disturbances are most important. The practical realization of such robust VSS algorithm using DSP ($TMS_{32020}$) is dicussed in this paper. PWH-like control signal which is produced by directly using VSS control algorithm substitutes the PWM amplifier. And the armature current is used in construction of switching function for the purpose of increasing switching frequency. In order to compensate steady state error produced by various external disturbances practical integral compensator is considered.

  • PDF

Design of Safe AP Certification Mechanism on Wireless LAN (무선 LAN 상에서 안전한 AP 인증 메커니즘 설계)

  • Kim, Jeom-Goo
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2011
  • Current IEEE 802.11 standard is very vulnerable that between the AP and STA authentication and security mechanisms is widely known. Therefore, IEEE has proposed security architecture RSN (Robust Security Network) for 802.11. RSN is used the access control, authentication, and key management based on the IEEE 802.1X standard. In this paper, IEEE 802.1X or 802.11 a combination of several models proposed for the vulnerability, and session hijacking or MiM (Man-in the-Middle) attacks to respond, the authentication mechanism Was designed to the access control between the STA and the AP.

The Development of Compensated Bang-Bang Current Controller for Travel Motor of Industry Electrical Vechicle (산업용 전기차량의 주행 모터용 보상된 Bang-Bang 전류제어기 개발)

  • Chen, Young-Shin;Jung, Young-Il;Bae, Jong-Il;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.34-40
    • /
    • 1999
  • In order to establish the design technique of the robust current controller in d.c series wound motor driver system, this paper proposes a method of the compensated Bang-Bang current control using d.c series wound motor driver system under the improperly variable load to get minimum time for the torque control. The compensated Bang-Bang current controller structure is simpler than that of PID plus Bang-Bang controller. This paper shows that a general 16 bits microprocessor is efficiently used to implement such an algorithm. The calculation time of software is extremely small when compared with that of conventional PID plus Bang-Bang controller. Both nonlinear operating characteristics of digital switching elements and describing function methods are used for the analysis and synthesis. Real-time implementation of the compensated Bang-Bang current controller is achieved. The concept of design strategy of the control and the PWM waveform generation algorithms are presented in this paper.

  • PDF

Design of Robust Current Controller Using GA for Three Level 24-Pulse VSC Based STATCOM

  • Janaki, M.;Thirumalaivasan, R.;Prabhu, Nagesh
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.375-380
    • /
    • 2011
  • A STATic synchronous COMpensator (STATCOM) is a shunt connected voltage source converter (VSC) based FACTS controller using Gate Turn Off (GTO) power semiconductor devices employed for reactive power control. The operation principal is similar to that of a synchronous condenser. A typical application of a STATCOM is voltage regulation at the midpoint of a long transmission line for the enhancement of power transfer capability and/or reactive power control at the load centre. This paper presents the modeling of STATCOM with twenty four pulse three level VSC and Type-1 controller to regulate the reactive current or the bus voltage. The performance is evaluated by transient simulation. It is observed that, the STATCOM shows excellent transient response to step change in the reactive current reference. While the eigenvalue analysis is based on D-Q model, the transient simulation is based on both D-Q and 3 phase models of STATCOM (which considers switching action of VSC).